[1] Tang W, Orlowski M, Longo JM, Giese P. Aerodynamic optimization of re-entry capsules. Aerospace science and technology. 2001;5(1):15-25. DOI: https://doi.org/10.1016/S1270-9638(00)01085-3
[2] Tava M, Suzuki S. Multidisciplinary design optimization of the shape and trajectory of a reentry vehicle. Transactions of the Japan Society for Aeronautical and Space Sciences. 2002;45(147):10-9 DOI: https://doi.org/10.2322/tjsass.45.10
[3] Arora R, Kumar P. Aerodynamic shape optimization of a re-entry capsule. InAIAA Atmospheric Flight Mechanics Conference and Exhibit 2003 (p. 5394). DOI: https://doi.org/10.2514/6.2003-5394
[4] Theisinger J, Braun R, Clark I. Aerothermodynamic Shape Optimization of Hypersonic Entry Aeroshells. In13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference 2010 (p. 9200).
DOI:
https://doi.org/10.2514/6.2010-9200
[5] Nosratollahi M, Mortazavi M, Adami A, Hosseini M. Multidisciplinary design optimization of a reentry vehicle using genetic algorithm. Aircraft Engineering and Aerospace Technology. 2010;82(3):194-203.
DOI:
https://doi.org/10.1108/00022661011075928
[6] Adami A, Nosratollahi M, Mortazavi M, Hosseini M. Multidisciplinary design optimization of a manned reentry mission considering trajectory and aerodynamic configuration. In Proceedings of 5th International Conference on Recent Advances in Space Technologies-RAST2011 2011 (pp. 598-603). IEEE. DOI: 10.1109/RAST.2011.5966908
[7] Bunescu I, Pricop MV, Stoican MG, Dina AG. Aerothermodynamic Shape Optimization for Re-entry Capsule Using Genetic Algorithms. INCAS Bulletin. 2019;11(4):71-9. DOI: 10.13111/2066-8201.2019.11.4.7
[8] Brchnelova M, Mooij E. Re-entry Shape Optimization Using the Axisymmetric Analogue Method with Modified Newtonian Technique Resolved Inviscid Flow field. In AIAA Scitech 2021 Forum 2021 (p. 0171).
DOI:
https://doi.org/10.2514/6.2021-0171
[9] He X, Zuo X, Li Q, Xu M, Li J. Surrogate-based entire trajectory optimization for full space mission from launch to reentry. Acta Astronautica. 2022;190:83-97. DOI: https://doi.org/10.1016/j.actaastro.2021.09.030
[10] Naseh H, Karimaei H, Lesani M. Two-Objective Structural Optimization of Space Capsule with Thin-Walled Cylindrical Approximation. Space Science, Technology and Applications. 2023;2(2):158-70. DOI: https://doi.org/10.22034/jssta.2023.374805.1101
[11] Kabganian M, Hashemi SM, Roshanian J. Multidisciplinary Design Optimization of a Re-Entry Spacecraft via Radau Pseudospectral Method. Applied Mechanics. 2022;3(4):1176-89. DOI: https://doi.org/10.3390/applmech3040067
[12] Iuspa L, Aprovitola A, Pezzella G, Cristillo V, Viviani A. Multi-disciplinary optimization of a space re-entry vehicle using skeleton-based integral soft objects. Aerospace Science and Technology. 2022;131:107996.
DOI:
https://doi.org/10.1016/j.ast.2022.107996
[13] Zhu H, Sun J, Guo H, Xu D, Cai G. Research on aerodynamic shape optimization of reentry vehicle based on hybrid scale multi-fidelity neural network model. Aerospace Science and Technology. 2023;142:108619.
DOI:
https://doi.org/10.1016/j.ast.2023.108619
[14] Sun J, Zhu H, Xu D, Cai G. Aerodynamic thermal simulation and heat flux distribution study of mechanical expansion reentry vehicle. Aerospace. 2023;10(3):310.
DOI:
https://doi.org/10.3390/aerospace10030310
[15] Zentner JM. A design space exploration process for large scale, multi-objective computer simulations. Georgia Institute of Technology; 2006.
[16] de Weck O, Agte J, Sobieszczanski-Sobieski J, Arendsen P, Morris A, Spieck M. State-of-the-art and future trends in multidisciplinary design optimization. In48th Aiaa/Asme/Asce/Ahs/Asc Structures, Structural Dynamics, and Materials Conference 2007 (p. 1905).
DOI:
https://doi.org/10.2514/6.2007-1905
[17] Balesdent M, Bérend N, Dépincé P, Chriette A. A survey of multidisciplinary design optimization methods in launch vehicle design. Structural and Multidisciplinary optimization. 2012;45(5):619-42. DOI: https://doi.org/10.1007/s00158-011-0701-4
[18] Dirkx D, Mooij E. Conceptual shape optimization of entry vehicles. Springer.; 2016. DOI: https://doi.org/10.1007/978-3-319-46055-0
[19] Sooy TJ, Schmidt RZ. Aerodynamic predictions, comparisons, and validations using missile datcom (97) and aeroprediction 98 (ap98). Journal of spacecraft and rockets. 2005;42(2):257-65.
DOI:
https://doi.org/10.2514/1.7814
[21] Karl S, Bykerk T. Sustainable space technologies—Strategies toward a predictive aerothermal design of re-useable space transportation systems. Review of Scientific Instruments. 2024;95(2).
DOI:
https://doi.org/10.1063/5.0177075
[22] Cantou T, Merlinge N, Wuilbercq R. 3DoF simulation model and specific aerodynamic control capabilities for a SpaceX's starship-like atmospheric reentry vehicle. In EUCASS 2019.
[23] Aprovitola A, Montella N, Iuspa L, Pezzella G, Viviani A. An optimal heat-flux targeting procedure for LEO re-entry of reusable vehicles. Aerospace Science and Technology. 2021;112:106608. DOI: https://doi.org/10.1016/j.ast.2021.106608
[25] Martins JR, Lambe AB. Multidisciplinary design optimization: a survey of architectures. AIAA journal. 2013;51(9):2049-75.
DOI:
https://doi.org/10.2514/1.J051895
[26] Keane A, Nair P. Computational approaches for aerospace design: the pursuit of excellence. John Wiley & Sons; 2005. DOI:10.1002/0470855487.
[27] Simpson T, Mistree F, Korte J, Mauery T. Comparison of response surface and kriging models for multidisciplinary design optimization. In7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization 1998 (p. 4755).
DOI:
https://doi.org/10.2514/6.1998-4755