نوع مقاله : گرایش ساخت و تولید
نویسنده
Maragheh, Iran
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسنده [English]
Achieving high surface quality, dimensional accuracy, and productivity in free-form and complex 3D geometries is crucial, especially in industries such as aerospace and medicine. This study investigates the effects of three modern finishing strategies—spiral, curve machining, and steep and shallow—on surface roughness, form error (as a geometric tolerance), and material removal rate. Simulations were performed using PowerMILL software, and experimental tests were conducted on a CNC milling machine. The results showed that the steep and shallow strategy delivered the best performance in terms of surface quality and geometric accuracy, achieving a surface roughness of 0.077𝜇𝑚 and a form error of 0.0184mm, with improvements of 27.49% and 76.86%, respectively, compared to other strategies. Conversely, the spiral strategy exhibited the highest productivity, with a material removal rate of 0.1325gr/s and a machining time of 30 minutes, demonstrating a 19.8% improvement in material removal rate compared to the lowest-performing strategy. These findings emphasize the importance of selecting a finishing strategy that balances surface quality, geometric accuracy, and process productivity to meet the specific requirements of each workpiece.
کلیدواژهها [English]