طراحی کنترل‌کننده تطبیقی فازی-مود لغزشی ترمینال برای سیستم تعلیق فعال جبران گرانش مورد استفاده در آزمایشگاه مکانیزه‌های فضایی

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 نویسنده مسئول: استادیار، پژوهشکده رانشگرهای فضایی، پژوهشگاه فضایی ایران، تبریز، ایران

2 کارشناسی ارشد، پژوهشکده رانشگرهای فضایی، پژوهشگاه فضایی ایران، تبریز، ایران

چکیده

در این مقاله، طراحی یک کنترل‌کننده مود لغزشی ترمینال تطبیقی بر اساس مجموعه‌های فازی نوع 1 و 2 برای سیستم جبران گرانش فعال ارائه‌شده است. این سیستم که برای شبیه‌سازی شرایط میکرو گرانش در محیط‌های زمینی طراحی‌شده، نقش مهمی در بررسی عملکرد تجهیزات فضایی پیش از پرتاب ایفا می‌کند. معادلات دینامیکی سیستم جبران گرانش تعلیق فعال با استفاده از رویکرد لاگرانژ مدل‌سازی شده است. طراحی کنترل‌کننده پیشنهادی با هدف بهبود پایداری و دقت سیستم در حضور اغتشاشات و عدم قطعیت‌ها صورت گرفته است. در این راستا، استفاده از منطق فازی نوع 1 و 2 باعث افزایش انعطاف‌پذیری کنترل‌کننده در مواجهه با عدم قطعیت‌ها شده و امکان کاهش چترینگ و همگرایی سریع‌تر به شرایط مطلوب را فراهم کرده است. نتایج شبیه‌سازی عددی در محیط متلب نشان داده‌اند که این کنترل‌کننده می‌تواند خطاهای خروجی سیستم را با دقت بالا کاهش داده و عملکرد مطلوبی در ردیابی مسیرهای مرجع ارائه دهد.

چکیده تصویری

طراحی کنترل‌کننده تطبیقی فازی-مود لغزشی ترمینال برای سیستم تعلیق فعال جبران گرانش مورد استفاده در آزمایشگاه مکانیزه‌های فضایی

تازه های تحقیق

  • سیستم تعلیق فعال جبران گرانش
  • کنترل غیرخطی مود لغزشی ترمینال
  • روش‌های فازی نوع 1 و 2

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of an Adaptive Fuzzy Controller with Terminal Sliding Mode for a Gravity-Compensated Active Suspension System Used in the Space Mechanism Laboratory

نویسندگان [English]

  • Moharram Shameli 1
  • Gholamreza Hashemi 2
1 Corresponding author: Assistant Professor, Space Thrusters Research Institute, Iranian Space Research Center, Tabriz, Iran
2 M.Sc., Space Thrusters Research Institute, Iranian Space Research Center, Tabriz, Iran
چکیده [English]

T This paper presents the design of an adaptive terminal sliding mode controller based on type 1 and type 2 fuzzy sets for the active gravity compensation system. This system is designed to simulate the microgravity conditions in terrestrial environments and plays an important role in testing the performance of spacecraft before launch. The dynamic equations of the active gravity compensation system of the suspension are modeled using Lagrangian approach. The design of the proposed controller aims to improve the stability and accuracy of the system in the presence of disturbances and uncertainties. In this context, the use of type 1 and 2 fuzzy logic has increased the flexibility of the controller in dealing with uncertainties and allowed the reduction of chattering and faster convergence to the desired conditions. The results of numerical simulation in the MATLAB environment have shown that this controller was able to reduce the output errors of the system with high accuracy and provide desirable performance in tracking reference sections.

کلیدواژه‌ها [English]

  • Active Gravity Compensation System
  • Terminal Sliding Mode Control
  • Type-1 Fuzzy Set
  • Type-2 Fuzzy Set

Smiley face

[1] White, G. C., Xu, Y. An active vertical-direction gravity compensation system. IEEE transactions on instrumentation and measurement. 1994; 43(6): 786-792. DOI: https://doi.org/10.1109/19.368066.
[2] Zhang, X., Jiang, Z., Zhao, Z., He, Y., Xu, Z., Liu, Y. Intelligent Control of a Space Manipulator Ground Unfold Experiment System with Lagging Compensation. Applied Sciences. 2023; 13(9): 5508. DOI: https://doi.org/10.3390/app13095508.
[3] Lu, Q., Liang, J., Qiao, B., Ma, O. A new active body weight support system capable of virtually offloading partial body mass. IEEE/ASME Transactions on Mechatronics. 2011; 18(1): 11-20. DOI: https://doi.org/10.1109/TMECH.2011.2160555.
[4] Jia, J., Jia, Y., Sun, S. Preliminary design and development of an active suspension gravity compensation system for ground verification. Mechanism and Machine Theory. 2018; 128: 492-507. DOI: https://doi.org/10.1016/j.mechmachtheory.2018.06.018.
[5] Ardelean, E., Jeon, S., Cooper, B. Dynamic Behavior of a Low Inertia Gravity Off-load Passive Device. Structures, Structural Dynamics and Materials Conference; 2012 23-26 April; Honolulu, Hawaii. DOI: https://doi.org/10.2514/6.2012-1954.
[6] Yaskevich, A. Real time math simulation of contact interaction during spacecraft docking and berthing. Journal of Mechanics Engineering and Automation. 2014; 4: 1-15. DOI.
[7] Hockman, B. J., Frick, A., Reid, R. G., Nesnas, I. A., Pavone, M. Design, control, and experimentation of internally‐actuated rovers for the exploration of low‐gravity planetary bodies. Journal of Field Robotics. 2017; 34(1): 5-24. DOI: https://doi.org/10.1002/rob.21656.
[8] Sawada, H., Ui, K., Mori, M., Yamamoto, H., Hayashi, R., Matunaga, S., Ohkami, Y. Micro-gravity experiment of a space robotic arm using parabolic flight. Advanced Robotics. 2004; 18(3): 247-267. DOI: https://doi.org/10.1163/156855304322972431.
[9] Shi, H., Ma, S., Huo, M., Qi, N. Design and control of a position servo system in the zero gravity simulation of space manipulators. International Conference on Fluid Power and Mechatronics (FPM); 2015 05-07 August; Harbin, China. DOI: https://doi.org/10.1109/FPM.2015.7337169.
[10] Ma, O., Diao, X. Dynamics analysis of a cable-driven parallel manipulator for hardware-in-the-loop dynamic simulation. International Conference on Advanced Intelligent Mechatronics; 2005 24-28 July; Monterey, CA, USA. DOI.
[11] Lidong, M., Yukun, C., Chi, G., Zheyao, X., Naiming, Q. Experimental study on the multi-dimensional microgravity simulation system for manipulators. International Conference on Fluid Power and Mechatronics; 2015 05-07 August; Harbin, China. DOI: https://doi.org/10.1109/FPM.2015.7337306.
[12] Jamshidi, S., Mirzaei, M., Malekzadeh, M., Rafatnia, S. Design and Experimental Implementation of Adaptive Actuator Failure Compensator for Spacecraft Attitude Control Simulator. Journal of Aerospace Mechanics. 2024; 20(1): 27-43. DOI: https://doi.org/20.1001.1.26455323.1403.20.1.2.4.
[13] Keighobadi, J., Hosseini‐Pishrobat, M., Faraji, J., Oveisi, A., Nestorović, T. Robust nonlinear control of atomic force microscope via immersion and invariance. International Journal of Robust and Nonlinear Control. 2019; 29(4): 1031-1050. DOI: https://doi.org/10.1002/rnc.4421.
[14] Faraji, J., Keighobadi, J. Design and Simulation of the integral backstepping sliding mode control and extended Kalman-Bucy filter for quadrotor. Journal of Mechanical Engineering. 2021; 50(4): 131-140. DOI.
[15] Yu, X., Feng, Y., Man, Z. Terminal sliding mode control–an overview. IEEE Open Journal of the Industrial Electronics Society. 2020; 2: 36-52. DOI: https://doi.org/10.1109/OJIES.2020.3040412.
[16] Yao, M., Xiao, X., Tian, Y., Cui, H. A fast terminal sliding mode control scheme with time-varying sliding mode surfaces. Journal of the Franklin Institute. 2021; 358(10): 5386-5407. DOI: https://doi.org/10.1016/j.jfranklin.2021.05.006.
[17] Dey, S., Giri, D. K., Gaurav, K., Laxmi, V. Robust nonsingular terminal sliding mode attitude control of satellites. Journal of Aerospace Engineering. 2021; 34(1): 06020003. DOI: https://doi.org/10.1061/(ASCE)AS.1943-5525.0001224.
[18] Ning, X., Zhu, Y., Wang, Z., Liu, L., Hao, Z. Output-Constrained Adaptive Composite Nonsingular Terminal Sliding Mode Attitude Control for a Class of Spacecraft Systems with Mismatched Disturbances and Input Uncertainties. Journal of Aerospace Engineering. 2024; 37(1): 04023093. DOI: https://doi.org/10.1061/JAEEEZ.ASENG-5027.
[19] Zhang, T., Shi, P., Li, W., Yue, X. Discrete nonsingular terminal sliding mode control for trajectory tracking of space manipulators with mismatched multiple disturbances and noisy measurements. Aerospace Science and Technology. 2024; 144: 108766. DOI: https://doi.org/10.1016/j.ast.2023.108766.
[20] Wang, A., Xu, X., Wang, S., Jiang, L., Ma, G., Xia, H. Terminal Sliding Mode Control for Microgravity Electromagnetic Active Vibration Isolation System. IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society; 2023. DOI.
[21] Duan, M., Jia, J., Ito, T. Fast terminal sliding mode control based on speed and disturbance estimation for an active suspension gravity compensation system. Mechanism and Machine Theory. 2021; 155: 104073. DOI: https://doi.org/10.1016/j.mechmachtheory.2020.104073.
[22] Samiei, S. K., Mirzaei, M., Rafatnia, S. Design and Experimental Implementation of an Adaptive Feedback Linearization Controller Based on Extended State Observer for a Flexible-joint Arm. Journal of Aerospace Mechanics. 2023; 19(4): 71-83. DOI: https://doi.org/20.1001.1.26455323.1402.19.4.6.7.
[23] Abdolkarimi, E. S., Rafatnia, S. Design of a Constrained Extended State Observer for Practical Implementation on an INS/GNSS Integrated Navigation System. Journal of Aerospace Mechanics. 2024; 20(3): 31-46. DOI: https://doi.org/20.1001.1.26455323.1403.20.3.3.9.
[24] Keighobadi, J., Faraji, J., Rafatnia, S. Chaos Control of Atomic Force Microscope System Using Nonlinear Model Predictive Control. Journal of Mechanics. 2017; 33(3): 405-415. DOI: 10.1017/jmech.2016.89.
[25] Yu, X., Zhihong, M. On finite time mechanism: terminal sliding modes. IEEE International Workshop on Variable Structure Systems; 1996 05-06 December; Tokyo, Japan. DOI: https://doi.org/10.1109/VSS.1996.578596.
[26] Faraji, J., Tale Masouleh, M., Saket, M., Radseresht, M. Design And Simulation Non-Singular Backstepping Terminal Sliding Mode Control And Extended Kalman Filter For Quadrotor. Modares Mechanical Engineering. 2018; 18(1): 219-230. DOI.
[27] Zadeh, L. A. Fuzzy sets. Information and Control. 1965. DOI.
[28] John, R., Coupland, S. Type-2 fuzzy logic: A historical view. IEEE computational intelligence magazine. 2007; 2(1): 57-62. DOI: https://doi.org/10.1109/MCI.2007.357194.
[29] Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning-I. Information sciences. 1975; 8(3): 199-249. DOI: https://doi.org/10.1016/0020-0255(75)90036-5.
[30] Mendel, J. M. Uncertain rule-based fuzzy systems. Introduction and new directions. 2017; 684. DOI: https://doi.org/10.1007/978-3-319-51370-6.
[31] Faraji, J., Keighobadi, J., Janabi-Sharifi, F. Design and implementation of an adaptive unscented Kalman filter with interval Type-3 fuzzy set for an attitude and heading reference system considering gyroscope bias. Mechanical Systems and Signal Processing. 2025; 223: 111870. DOI: https://doi.org/10.1016/j.ymssp.2024.111870.
[32] Sajedi, R., Faraji, J., Kowsary, F., Kahrbaeiyan, A. Estimation of thermal parameters of a locomotive brake disc using an adaptive type 1 and type 2 fuzzy Kalman filter. International Communications in Heat and Mass Transfer. 2024; 157: 107825. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2024.107825.
دوره 21، شماره 1 - شماره پیاپی 79
شماره پیاپی 79، فصلنامه بهار
خرداد 1404
صفحه 109-125
  • تاریخ دریافت: 11 دی 1403
  • تاریخ بازنگری: 04 بهمن 1403
  • تاریخ پذیرش: 20 بهمن 1403
  • تاریخ انتشار: 01 خرداد 1404