[1] White, G. C., Xu, Y. An active vertical-direction gravity compensation system. IEEE transactions on instrumentation and measurement. 1994; 43(6): 786-792.
DOI: https://doi.org/10.1109/19.368066.
[2] Zhang, X., Jiang, Z., Zhao, Z., He, Y., Xu, Z., Liu, Y. Intelligent Control of a Space Manipulator Ground Unfold Experiment System with Lagging Compensation. Applied Sciences. 2023; 13(9): 5508.
DOI: https://doi.org/10.3390/app13095508.
[3] Lu, Q., Liang, J., Qiao, B., Ma, O. A new active body weight support system capable of virtually offloading partial body mass. IEEE/ASME Transactions on Mechatronics. 2011; 18(1): 11-20.
DOI: https://doi.org/10.1109/TMECH.2011.2160555.
[5] Ardelean, E., Jeon, S., Cooper, B. Dynamic Behavior of a Low Inertia Gravity Off-load Passive Device. Structures, Structural Dynamics and Materials Conference; 2012 23-26 April; Honolulu, Hawaii.
DOI: https://doi.org/10.2514/6.2012-1954.
[6] Yaskevich, A. Real time math simulation of contact interaction during spacecraft docking and berthing. Journal of Mechanics Engineering and Automation. 2014; 4: 1-15. DOI.
[7] Hockman, B. J., Frick, A., Reid, R. G., Nesnas, I. A., Pavone, M. Design, control, and experimentation of internally‐actuated rovers for the exploration of low‐gravity planetary bodies. Journal of Field Robotics. 2017; 34(1): 5-24.
DOI: https://doi.org/10.1002/rob.21656.
[8] Sawada, H., Ui, K., Mori, M., Yamamoto, H., Hayashi, R., Matunaga, S., Ohkami, Y. Micro-gravity experiment of a space robotic arm using parabolic flight. Advanced Robotics. 2004; 18(3): 247-267.
DOI: https://doi.org/10.1163/156855304322972431.
[9] Shi, H., Ma, S., Huo, M., Qi, N. Design and control of a position servo system in the zero gravity simulation of space manipulators. International Conference on Fluid Power and Mechatronics (FPM); 2015 05-07 August; Harbin, China.
DOI: https://doi.org/10.1109/FPM.2015.7337169.
[10] Ma, O., Diao, X. Dynamics analysis of a cable-driven parallel manipulator for hardware-in-the-loop dynamic simulation. International Conference on Advanced Intelligent Mechatronics; 2005 24-28 July; Monterey, CA, USA. DOI.
[11] Lidong, M., Yukun, C., Chi, G., Zheyao, X., Naiming, Q. Experimental study on the multi-dimensional microgravity simulation system for manipulators. International Conference on Fluid Power and Mechatronics; 2015 05-07 August; Harbin, China.
DOI: https://doi.org/10.1109/FPM.2015.7337306.
[12] Jamshidi, S., Mirzaei, M., Malekzadeh, M., Rafatnia, S. Design and Experimental Implementation of Adaptive Actuator Failure Compensator for Spacecraft Attitude Control Simulator. Journal of Aerospace Mechanics. 2024; 20(1): 27-43.
DOI: https://doi.org/20.1001.1.26455323.1403.20.1.2.4.
[13] Keighobadi, J., Hosseini‐Pishrobat, M., Faraji, J., Oveisi, A., Nestorović, T. Robust nonlinear control of atomic force microscope via immersion and invariance. International Journal of Robust and Nonlinear Control. 2019; 29(4): 1031-1050.
DOI: https://doi.org/10.1002/rnc.4421.
[14] Faraji, J., Keighobadi, J. Design and Simulation of the integral backstepping sliding mode control and extended Kalman-Bucy filter for quadrotor. Journal of Mechanical Engineering. 2021; 50(4): 131-140. DOI.
[16] Yao, M., Xiao, X., Tian, Y., Cui, H. A fast terminal sliding mode control scheme with time-varying sliding mode surfaces. Journal of the Franklin Institute. 2021; 358(10): 5386-5407.
DOI: https://doi.org/10.1016/j.jfranklin.2021.05.006.
[18] Ning, X., Zhu, Y., Wang, Z., Liu, L., Hao, Z. Output-Constrained Adaptive Composite Nonsingular Terminal Sliding Mode Attitude Control for a Class of Spacecraft Systems with Mismatched Disturbances and Input Uncertainties. Journal of Aerospace Engineering. 2024; 37(1): 04023093.
DOI: https://doi.org/10.1061/JAEEEZ.ASENG-5027.
[19] Zhang, T., Shi, P., Li, W., Yue, X. Discrete nonsingular terminal sliding mode control for trajectory tracking of space manipulators with mismatched multiple disturbances and noisy measurements. Aerospace Science and Technology. 2024; 144: 108766.
DOI: https://doi.org/10.1016/j.ast.2023.108766.
[20] Wang, A., Xu, X., Wang, S., Jiang, L., Ma, G., Xia, H. Terminal Sliding Mode Control for Microgravity Electromagnetic Active Vibration Isolation System. IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society; 2023. DOI.
[21] Duan, M., Jia, J., Ito, T. Fast terminal sliding mode control based on speed and disturbance estimation for an active suspension gravity compensation system. Mechanism and Machine Theory. 2021; 155: 104073.
DOI: https://doi.org/10.1016/j.mechmachtheory.2020.104073.
[22] Samiei, S. K., Mirzaei, M., Rafatnia, S. Design and Experimental Implementation of an Adaptive Feedback Linearization Controller Based on Extended State Observer for a Flexible-joint Arm. Journal of Aerospace Mechanics. 2023; 19(4): 71-83.
DOI: https://doi.org/20.1001.1.26455323.1402.19.4.6.7.
[23] Abdolkarimi, E. S., Rafatnia, S. Design of a Constrained Extended State Observer for Practical Implementation on an INS/GNSS Integrated Navigation System. Journal of Aerospace Mechanics. 2024; 20(3): 31-46.
DOI: https://doi.org/20.1001.1.26455323.1403.20.3.3.9.
[24] Keighobadi, J., Faraji, J., Rafatnia, S. Chaos Control of Atomic Force Microscope System Using Nonlinear Model Predictive Control. Journal of Mechanics. 2017; 33(3): 405-415. DOI: 10.1017/jmech.2016.89.
[25] Yu, X., Zhihong, M. On finite time mechanism: terminal sliding modes. IEEE International Workshop on Variable Structure Systems; 1996 05-06 December; Tokyo, Japan.
DOI: https://doi.org/10.1109/VSS.1996.578596.
[26] Faraji, J., Tale Masouleh, M., Saket, M., Radseresht, M. Design And Simulation Non-Singular Backstepping Terminal Sliding Mode Control And Extended Kalman Filter For Quadrotor. Modares Mechanical Engineering. 2018; 18(1): 219-230. DOI.
[27] Zadeh, L. A. Fuzzy sets. Information and Control. 1965. DOI.
[31] Faraji, J., Keighobadi, J., Janabi-Sharifi, F. Design and implementation of an adaptive unscented Kalman filter with interval Type-3 fuzzy set for an attitude and heading reference system considering gyroscope bias. Mechanical Systems and Signal Processing. 2025; 223: 111870.
DOI: https://doi.org/10.1016/j.ymssp.2024.111870.
[32] Sajedi, R., Faraji, J., Kowsary, F., Kahrbaeiyan, A. Estimation of thermal parameters of a locomotive brake disc using an adaptive type 1 and type 2 fuzzy Kalman filter. International Communications in Heat and Mass Transfer. 2024; 157: 107825.
DOI: https://doi.org/10.1016/j.icheatmasstransfer.2024.107825.