تحلیل ارتعاشات اجباری ورق ضخیم مستطیلی هدفمند بر اساس تئوری مرتبه‌ بالاتر تغییر شکل برشی و قائم

نویسندگان

1 دانشکده مهندسی مکانیک دانشگاه شهید باهنر کرمان

2 دانشکده مهندسی مکانیک دانشگاه تبریز

چکیده

در این مقاله، تحلیل ارتعاشات اجباری حالت ماندگار ورق­های مستطیلی ساخته­شده از مواد هدفمند همسانگرد و همسانگرد عرضی بررسی شده است. بر پایه تئوری جدید مرتبه­ بالاتر تغییر شکل برشی و قائم که توسط باترا و ویدولی ارائه شده است، معادلات حاکم با استفاده از اصل کار مجازی به­دست می­آیند. در این تئوری هر دو اثر تغییر شکل برشی و قائم در راستای ضخامت لحاظ می­شود. همچنین، خیز ورق در امتداد ضخامت ثابت درنظر گرفته نمی­شود. برای بیان خواص مکانیکی مواد هدفمند در راستای ضخامت از تابع توانی، استفاده شده است. نتایج عددی براساس تئوری مرتبه اول تا پنجم تغییر شکل برشی و قائم در قالب جدول­ها و نمودارها بیان شده­اند. اثر خواص مواد هدفمند و پارامترهای هندسی ورق روی خیز و تنش­ها مورد بررسی قرار گرفته است. این بررسی نشان می‎دهد که این تئوری نه تنها برای ورق­های نازک و نیمه ­ضخیم، بلکه برای ورق­های ضخیم نیز نتایج بسیار دقیقی می­دهد.

کلیدواژه‌ها


  1. Batra, R.C. and Vidoli, S. “Higher Order Piezoelectric Plate Theory Derived from a Three-Dimensional Variational Principle”, J. AIAA, Vol. 40, No. 1, pp. 91–104, 2002.
  2. Reddy, J.N. “On Laminated Composite Plates with Integrated Sensors and Actuators”, J. Engineering Structures, Vol. 21, No. 7, pp. 568–93, 1999.
  3. Reddy, J.N. “Analysis of Functionally Graded Plates”, J. Numerical Methods in Engineering, Vol. 47, No. 1, pp. 663-84, 2000.
  4. Shen, H.S., Yang, J. and Zhang, L. “Free and Forced Vibration Of Reissner-Mindlin Plates with Free Edges Resting on Elastic Foundations”, J. Sound and Vibration, Vol. 244, No. 2, pp. 299-320, 2001.
  5. Shen, H.S., Zheng, J.J. and Huang, X.L. “Dynamic Response of Shear Deformable Laminated Plates Under Thermo-Mechanical Loading and Restingon Elastic Foundations”, J. Composite Structures, Vol. 60, No. 1, pp. 57-66, 2003.
  6. Qian, L.F., Batra, R.C. And Chen, L.M. “Free and Forced Vibrations of Thick Rectangular Plates by using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov-Galerkin (MLPG) Method”, J. Computer Modeling in Engineering and Sciences, Vol. 4, No. 5, pp. 519–34, 2003.
  7. Yang, Z.G., Zhong, Z., and Dai, Y. "Three Dimensional Elasticity Analysis of a Functionally Graded Rectangular Plate", Chinese Quarterly Mechanic. China, 2004.
  8. Ashraf, M., and Zenkour. "Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Plates". Mathematical Modelling, Vol. 30, No. 1, pp. 67–84, 2006.
  9. Batra, R.C., and Aimmanee, S. "Vibrations of Thick Isotropic Plates With Higher Order Shear and Normal Deformable Plate Theories", Computers and Structures, Vol. 83, No. 12, pp. 934–955, 2005.
  10. Batra, R.C. and Aimmanee, V. S. “Vibration of an Incompressible Isotropic Linear Elastic Rectangular Plate with a Higher-order Shear and Normal Deformable Theory”, J. Journal of Sound and Vibration, Vol. 307, No. 3, pp. 961–971, 2007.
  11. Batra, R.C. “Higher Order Shear and Normal Deformable Theory for Functionally Graded Incompressible Linear Elastic Plates”, J. Thin-Walled Structures, Vol. 45, No. 12, pp. 974–982, 2007.
  12. Matsunaga, H. “Free Vibration and Stability of Functionally Graded Plates According to a 2-D Higher-order Deformation Theory”, J. Composite Structures, Vol. 82, No. 4, pp. 499–512, 2008.
  13. Saidi, A.R .and Atashipour, S.R. “Analytical Solution of Free Vibration of Thick Transversely Isotropic Rectangular Plates Based on First Order Shear Deformation Theory”, Aero. Mech. J., Vol. 4, No. 3, pp. 59-69, 2008. (In Persian)
  14. Amini, M. H., Soleimani, M. and Rastgoo, A. “Three-dimensional free Vibration Analysis of Functionally Graded Material Plates Resting on an Elastic Foundation”. J. Smart Materials and Structures, Vol. 18, No. 8, pp. 1–9, 2009.
  15. Li, Q., Iu, V.P. and Kou, K.P. “Three-dimensional Vibration Analysis of Functionally Graded Material Plates in Thermal Environment”, J. Sound and Vibration, Vol. 324, No. 7, pp. 733-750, 2009.
  16. Hasani Baferani, A., Saidi, A.R. and Jomehzadeh, E. “Exact Solution for free Vibration of Thin Functionally Graded Rectangular Plates”, J. Mechanical Engineering Science, Vol. 225, No. 10, pp. 526-536, 2010.
  17. Liu, D.Y., Wang, C.Y. and Chen, W.Q. “Free Vibration of FGM Plates with In-plane Material Inhomogeneity”, J. Composite Structures, Vol. 92, No. 5, pp. 1047-51, 2010.
  18. Yang, B., Ding, H.J., and Chen, W.Q. “Elasticity Solutions for Functionally Grad Rectangular Plates with Two Opposite Edges Simply Supported”, J. Applied Mathematical Modelling, Vol. 36, pp. 488–503, 2011.
  19. Baferani, A.H., Saidi, A.R. and Ehteshami, H. “Accurate Solution for free Vibration Analysis of Functionally Graded Thick Rectangular Plates Resting on Elastic Foundation”, J. Composite Structures, Vol. 93, No. 7, pp. 1842–1853, 2011.
  20. Hosseini Hashemi, Sh., Akhavan, H. and Fadaee, M. “Exact Closed- form free Vibration Analysis of Moderately Thick Rectangular Functionally Graded Plates with Two Bonded Piezoelectric Layers”, J. Modares Mechanical Engineering, Vol. 11, No. 3, pp. 57-74. (In Persion)
  21. Sheikholeslami, S.A. and Saidi, A.R “Vibration Analysis of Functionally Graded Rectangular Plates Resting on Elastic Foundation Using Higher-order Shear and Normal Deformable Plate Theory”, J. Composite Structures, Vol. 106, No. 12, pp. 350-361, 2013.
  22. Isvandzibaei, M.R. Setareh, M. and Jahani, A. “Comparison of Clamped-Clamped and Clamped-free Boundary Conditions for free Vibration of FGM Cylindrical Shell with Ring Support, Based on Third Order Shear Deformation Theory”, Aero. Mech. J., Vol. 6, No. 3, pp. 25-38, 2009. (In Persian)
  23. Mousavi, Z. Saidi, A.R. “Free Vibration Analysis of Thick Functionally Graded Rectangular Plates Based on The Higher-Order Shear and Normal Deformable”, Aero. Mech. J., Vol. 6, No. 3, pp. 25-38, 2015. (In Persian)