بهینه سازی طراحی چندموضوعی یک هواپیمای بی سرنشین و انتخاب حل نهایی براساس تابع درجه رضایت مندی فازی

نویسندگان

صنعتی مالک اشتر

چکیده

در این مقاله، یک ساختار جامع برای بهینه‌سازی طراحی چندموضوعی هواپیماهای بی‌سرنشین بیان و سپس جهت اعتبارسنجی آن بهینه-سازی طراحی هواپیمای بی‌سرنشین Predator MQ-1 مورد بررسی قرار گرفته است. موضوعات درگیر در آنالیز چندموضوعی عبارتند از: عملکرد، آیرودینامیک، تخمین جرم، مرکز جرم و ممان اینرسی‌ها، تخمین مشتقات پایداری و کنترل، تریم و تخمین مشخصه‌های پایداری دینامیکی. کمینه‌سازی وزن برخاست و نیروی پسآی فاز سیر هدف‌های در نظر گرفته شده در این تحقیق می‌باشند. از آنجایی که دو تابع هدف در نظر گرفته شده است از الگوریتم ژنتیک چندهدفه ( با مفهوم مرتب‌سازی نامغلوب) به عنوان بهینه‌ساز استفاده شده است که قادر به ایجاد مجموعه‌ای از حل‌های بهینه تحت عنوان پرتو فرانت می‌باشد. جهت انتخاب یک حل نهایی از میان پرتو فرانت‌ها در این مقاله روشی بر مبنای منطق فازی تحت عنوان درجه رضایت‌مندی مطرح گردیده است. از نقاط قوت این تحقیق می‌توان به جامعیت آن (تعداد موضوعات درگیر در طراحی، تعداد متغیرهای طراحی و قیود مساله) و همچنین ارائه یک روش ساده و موثر جهت انتخاب حل نهایی اشاره کرد. نتایج بهینه‌سازی نشان‌دهنده کارآمدی ساختار تدوین شده و همچنین روش پیشنهادی می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Multidisciplinary Design Optimization of an Unmanned Air Vehicle and Final Solution Selection Based on Fuzzy Satisfaction Degree Function

چکیده [English]

In this paper, a comprehensive structure is expressed for multidisciplinary design optimization of the unmanned air vehicle and the design optimization of Predator MQ-1 has been studied for validation. The considered modules in the multidisciplinary analysis are performance, aerodynamic, weight, center of gravity, stability and control derivatives, trim and dynamic stability characteristics. The minimization of take-off weight and cruise drag are considered as objective functions. Since two objective functions are considered, therefore multi-objective genetic algorithm (with the non-dominated sorting concept) is used as optimizer which can generate set of optimal solutions as Pareto fronts. A method based on fuzzy logic named satisfaction degree function is expressed for final solution selection. The strengths of this paper are its comprehensiveness (the number of design modules, the number of design variables and constraints) and the presentation of a simple and efficient method for final solution selection. The optimization results show the effectiveness of the structured framework and suggested method.

کلیدواژه‌ها [English]

  • Multidisciplinary Design Optimization
  • Unmanned Air Vehicle
  • Satisfaction Degree Function
  • Fuzzy Logic
  1. Dinc, A. “Optimization of a Turboprop UAV for Maximum Loiter and Specific Power using Genetic Algorithm”, Int. J. Turbo. Jet. Eng, Vol. 33, No. 3, pp. 1-9, 2015.##
  2. Ng, T.T.H. and Leng, G.S.B. “ Application of Genetic Algorithms to Conceptual Design of a Micro-Air Vehicle”, Eng. Appl. Artif. Intell, Vol. 15, No. 5, pp. 439-445, 2002.##
  3. Setayandeh, S.M.R. “Application of Multidisiciplinary Design Optimization in Unmanned Aerial Vehicle”, Msc Seminar, Khaje Nasir University of Technology, Faculty of Aerospace Engineering, 2010. (In Persian)##
  4. Nguyen, N. “An Efficient Multy-fidelity Approach for the Multi-Disciplinary Aerospace System Design and Optimization”, PhD Thesis, Konkuk University, Faculty of Aerospace Engineering, 2011.##
  5. Cavus, N. “ Multidisicplinary and Multi-objective Design Optimization of an Unmanned Combat Aerial Vehicle”, Msc thesis, Middle East Technical University, Faculty of Aerospace Engineering, 2009.##
  6. Caldeira Fouto, A. “Multidisciplinary Optimization Strategies using Evolutionary Algorithms with Application to Aircraft Design”, Msc Thesis, University Technical Lisboa, Faculty of Aerospace Engineering, 2009.##
  7. Azizi, M.A. “Aircraft Design Cycle Time Reduction  using Artificial Intelligence”, PhD. Thesis, Isfahan University of Technology, Faculty of Mechanical Engineering, 1391. (In Persian)##
  8. Pan, Y., Huang, J., Li, F., and Yan, C. “Application of Multidisciplinary Design Optimization on Advanced Configuration Aircraft”, J. Aero. Tech. Manag, Vol. 9, No. 1, pp. 63-70, 2017.##
  9. Tianyuan, H.,  and Xiongqing, Y. “Aerodynamic/ Stealthy/ Structural Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle”, Chin. J. Aeronaut, Vol. 22, pp. 380-386, 2009.##

10. Nguyen, N.V., Choi, S.M., Kim, W.W., Lee, J.W., Kim, S., Neufeld, D., and Byun, Y.H. “Multidisciplinary Unmanned Combat Air Vehicle System Design using Multi-fidelity Model”, Aero. Sci. Tech, Vol. 26, No. 1 pp. 200-210, 2013.##

11. Roshanian, J., Bataleblu, A.A., Farghadani, M.H., and Ebrahimi, B. “Multi-Objective Multidisciplinary Design Optimization of a General Aviation Aircraft”, Modares Mechanical Engineering, Vol. 17, No. 2, pp. 199-210, 2017. (In Persian)##

12. Nguyen, N.V., Neufeld, D., Kim, S., and Lee, J.W. “Multidisciplinary Configuration Design Optimization for Advanced Very Light Aircraft”; KSAS. Int. Conf. Seoul, South Korea, 2011.##

13. Batill, S.M., Stelmack, M.A., and Yu, X.Q. “Multidisciplinary Design Optimization of an Electric-Powered Unmanned Air Vehicle”, Aircraft. Des, Vol. 2, pp. 1-18, 1999.##

14. Rajagopal, S., and Ganguli, R. “Multidisiciplinary Design Optimization of a UAV Wing using Kriging based Multi-Objective Genetic Algorithm”; MSDM. Int. Conf. California, USA, 2009.##

15. Papageorgion, A. “Development of a Multidisciplinary Design Optimization Framework Applied in UAV Design”, Msc Thesis, Linkoping University, Faculty of Management and Engineering, 2015.##

16. Morrisey, B.J. “Multidisciplinary Design Optimization of an Extreme Aspect Ratio HALE UAV”, Msc Thesis, California Polytechnic State University, Faculty of Aerospace Engineering, 2009.##

17. Babaei, A.R., and Setayandeh, S.M.R. “Constrained Optimization of an Commercial Aircraft Wing using Non-dominated Sorting Genetic Algorithm”, Int. J. Adv. Des. Manuf. Tech, Vol. 8, No. 4, pp. 51-61, 2015.##

18. Anderson, J. “Aircraftd Performance and Design”, McGraw-Hill Companies, New York, United States 1999.##

19. Sadraey, M.H., “Aircraft Design: A System Engineering Approach”, John Wiley & Sons Publication, New Hampshire, USA, 2013.##

20. Schemensky, R.T. “Development of an Empirical Based Computer Program to Predict the Aerodynamic Characteristics of Aircraft- Empirical Methods”, Air Force Flight Dynamics Laboratory, Report No.: AD-780100, Texas, USA, 1973.##

21. Roskam, J. “Airplane Flight Dynamics and Automatic Flight Controls”, Roskam Aviation and Engineering Corporation, Kansas, USA, 1982.##

22. Mirzaali, H., Karimi, J., and Shahi-Ashtiani, M.A. “Multi Objective Constrained Optimization of Aerial Robot Mission Profile”, Aerospace Mechanics Journal, Vol. 14, No. 4, pp. 91-100, 2017. (In Persian)##

23. Kalyanmoy, D., Pratap, A., Agarwal, S., and Meyarivan, T. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-2”, IEEE. Trans. Evol. Comput,Vol. 6, No. 2, pp. 182-197, 2002.##