بهبود عملکرد و کاهش حجم سامانه خنک‌کاری در پیل‌های سوختی پلیمری دما پایین با استفاده از نانو‌سیال

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده

مدیریت صحیح گرما یکی از معضلات اساسی در پیل‌های سوختی بوده که باید به نحوی مرتفع گردد. عملکرد پیل در دماهای بالا باعث خشک شدن غشاء، افزایش مقاومت اهمی پیل، انقباض و گسیختگی غشاء و در دما‌های پایین باعث کاهش نرخ واکنش‌ها، ولتاژ، راندمان، توان خروجی و همچنین باعث میعان آب و وقوع پدیده غرقابگی در سمت کاتد می‌گردد. افزایش توان در پیل‌های سوختی با افزایش تعداد پیل‌ها در یک استک پیل سوختی همراه است. با افزایش توان گرمای تولید شده در استک افزایش می‌یابد که نیازمند دبی بالای سیال خنک‌کاری برای دفع حرارت تولید شده است. افزایش دبی با افزایش حجم سیستم خنک‌کاری، افزایش توان مصرفی پارازیتی و در نتیجه کاهش راندمان در استک همراه است. در این مقاله استفاده از نانوسیال به عنوان راهکاری برای حل این مشکل معرفی می‌شود و اثر آن بر کاهش توان پارازیتی مورد بررسی قرار می‌گیرد. نتایج نشان داده است که با استفاده از مخلوط آب و 2 درصد نانوذره اکسید آلومینیم در رینولدز 6000 خواهیم توانست اختلاف دمای تمامی نقاط را نسبت به ورودی کمتر از 5 درجه نگه داریم. این در حالی است که برای سیال پایه باید حداقل رینولدز جریان به 9000 برسد.

کلیدواژه‌ها


  1. Islam, M. R., Shabani, B., and Rosengarten, G. “Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach”, APPL. ENERG, Vol. 178, pp. 660–671, 2016.##
  2. Maxwell, J. C. “Treatise on Electricity and Magnetism”,2th edition Clarendon Press, Oxford, UK, 1881.##
  3. Choi, S. U. S., Siginer, D. A., and Wang, H. P. “Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows”, The American Society of Mechanical Engineers, New York, FED-Vol. 231 / MD-Vol.66, pp. 99-105, 1995.##
  4. Keblinski, P.P., Choi, S.U.S. and Eastman, J. A. “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)”, INT. J. HEAT. MASS. TRAN, Vol. 45, pp.855–863, 2002.##
  5. Wang, X., Xu, X. and Choi, S. U. S. “Thermal conductivity of nanoparticle-fluid mixture”, J. THERMOPHYS. HEAT. TR, Vol. 13, pp. 474–480, 1999.##
  6. Xuan, Y., and Li, Q. “Heat transfer enhancement of nanofluids”, INT. J. HEAT. MASS. TRAN, Vol. 21, pp.58–64, 2000.##
  7. Duangthongsuk, W., and Wongwise, S. “Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance”, EXP. THERM. FLUID. SCI, Vol. 34, pp. 616–624, 2010.##
  8. Lee, S. Choi, S. U .S., Li, S. and Eastman, J. “Measuring thermal conductivity of fluids containing oxide nanoparticles”, ASME, pp. 280–289,1999.##
  9. Xie, H., Wang, J., Xi, T,. Liu, Y., Ai, F., and Wu, Q. “Thermal conductivity enhancement of suspensions containingnanosized alumina particles”. J. APPL. PHYS, pp. 4568–4572, 2002.##

10. Das, S.K. Putra, N. Thiesen, P. and W.Roetzel, “Temperature dependence of thermal conductivity enhancement fornanofluids”, ASME, pp. 567–574,2003.##

11. Wen, D., and Ding, Y. “Experimental investigation into convective heat transfer ofnanofluids at the entrance region under laminar flow conditions”, INT. J. HEAT. MASS. TRAN, Vol. 47, pp. 5181–5188,2004.##

12.  Heris, S. Z., Etemad, S. G., and Esfahany, M. N. “Experimental investigation of oxide nanofluids laminar flow convective heat transfer”, INT. COMMUN. HEAT. MASS, Vol. 33, pp. 529–535, 2006.##
13.  Roy, G. C., Nguyen, T., and Lajoie, P. R. “Numerical investigation of laminar flow and heat transfer in a radialflow cooling system with the use of nanofluids”, SUPERLATTICE. MICROST, Vol.35, pp. 497–511, 2004.##

14.  Xuan, Y., and Li, Q. “Heat Transfer Enhancement of Nanofluids”, INT. J. HEAT. FLUID. FL, Vol. 21, pp. 58-64, 2000.##

15. Zakaria, I., Mohamed, W.A.N.W., Bin Mamat, A.M.I., Azmi, W.H., Mamat, R., Sainan, K.I., Ismail, H. “Thermal Analysis of Heat Transfer Enhancement for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in a Single PEMFC Cooling Plate”, ENRGY. PROCED, Vol. 79, pp. 259 – 264, 2015.##

16. Zakaria, I., Mohamed, W.A.N.W., Bin Mamat, A.M.I., Saidur, W.H., Rizalman, M., Tali, S.F.A. “Experimental Investigation of Al2O3 - Water Ethylene Glycol Mixture Nanofluid Thermal Behaviour in a Single Cooling Plate for PEM Fuel Cell Application”, ENRGY. PROCED, Vol. 79, pp. 252 – 258, 2015.##

17. Zakaria, I., Azmi, W.H., Mamat, A.M.I., Rizalman M., Saidur, R., Abu Talib, S.F., Mohamed, W.A.N.W. “Thermal analysis of Al2O3ewater ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: An experimental study”, INT. J. HYDROGEN. ENERG, Vol. 41, No. 9, pp. 5096-5112, 2016.##

18. M. Hemmat Esfe and S. Saedodin, S.S Mir-Talebi, Influence of Variable Properties Nanofluid on Combined Convection Heat Transfer in a Two Sided Lid-Driven Enclosure with Sinusoidal Temperature Profile, Aerospace Mechanical Journal, Vol. 10, No.2, pp. 51-63, 2012 (In Persian)##

19. Pak, B. C., and Cho,Y. I. “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, EXP. HEAT. TRANSFER, Vol. 11, pp.151–170, 1998.##

20. Chon, C. H., and Kihm, K. D. “Thermal Conductivity Enhancement of Nanofluids by Brownian Motion”, J. HEAT. TRANSF, Vol. 127, No.8, pp. 810, 2005.##

21. Mintsa,  H. A., Roy, G., Nguyen, C. T., and Doucet, D. “New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids”, INT. J. THERM. SCI, Vol. 48, No. 2, pp. 363-371, 2009.##

22. A. Shateri and M.M. Zarei Kurdshouli, V. Zarei, Calculation of the Viscosity of Nanofluid Water SPC Model in Molecular Dynamics, Aerospace Mechanical Journal, Vol. 6, No.1, pp. 67-78, 2017 (In Persian)##

23. Masoumi, N., Sohrabi, N., and Behzadmehr, A. “A new model for calculating the effective viscosity of nanofluids”, J. PHYS. D. APPL. PHYS, Vol. 42, pp. 055-501, 2009.##

24. Baek, S.M., Yu, S.H., Nam, J.H., Kim, C. “A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs”, APPL. THERM. ENG, Vol. 31, pp.1427-1434, 2011.##

25. Frano Barbir, “PEM Fuel Cells: Theory and Practice”, 2nd Edition, 2012.##