تلفیق حسگرها در سامانه پایش وضعیت ابزار با استفاده از سیستم استنتاج عصبی- فازی تطبیقی بهینه‌شده

نویسندگان

1 عضو هیات علمی دانشگاه فنی و مهندسی بوئین زهرا

2 دانسگاه آزاد تهران شرق

3 دانشگاه بیرجند

چکیده

در حال حاضر بیشتر سیستم­های پایش وضعیت سایش ابزار براده­ برداری مبتنی بر مقادیر مشخصه­هایی از سیگنال که مرتبط با سایش ابزار هستند می­باشند. ارزیابی وضعیت ابزار بر­اساس مشخصه­های سیگنال یک حسگر قابل اطمینان نمی­باشد زیرا مشخصه به­دست آمده از سیگنال یک حسگر علاوه بر سایش ابزار به سایر عوامل غیر مرتبط با سایش ابزار مانند پارامترهای فرآیند و اغتشاشات تصادفی نیز وابسته است. راه حل این مساله، تلفیق داده­های چند حسگر غیر­متجانس می­باشد. اطلاعات به­دست­آمده از این روش کامل­تر و دارای دقت و قابلیت اطمینان­ بالاتری است. در این تحقیق، ترکیب حسگرهای بینایی، جریان، کرنش و ارتعاشات به­منظور پیش­بینی وضعیت سایش سطح آزاد ابزار پیشنهاد شده است. مدل سیستم استنتاج عصبی فازی تطبیقی (ANFIS) بهینه شده جهت تلفیق مشخصه­های سیگنال بافت سطح، جریان موتور، کرنش و ارتعاشات توسعه شده است. ساختار مدل ANFIS پیشنهادی دارای چهار ورودی و یک خروجی می­باشد. ورودی­های مدل شامل بی نظمی بافت سطح قطعه­کار (که توسط تبدیل موجک فیلتر شده)، انتگرال حاشیه­ای زمان فرکانس سیگنال جریان موتور اسپیندل و بی نظمی شانون سیگنال­های کرنش و ارتعاشات ابزار می­باشد. نتایج به­دست­آمده نشان داد با استفاده از مدل ANFIS بهینه شده می­توان مشخصه­های سیگنال­ها را تلفیق و با دقت بالایی در پیش­بینی وضعیت ابزار استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-Sensory Data Fusion System for Tool Condition Monitoring Using Optimized Artificial Fuzzy Inference System

نویسندگان [English]

  • mahdi danesh 1
  • sedighe danesh 2
  • khalil khalili 3
1 booin zahra
2 azad tehran shargh
3 birjand
چکیده [English]

Currently, most of the available tool wear condition monitoring systems are based on the signal features quantities that are correlated with tool wear. The evaluation of tool wear based on one sensor is not reliable because the measured features depends not only on tool wear but also on other process parameters and random disturbances. For solving this problem, multi sensor data fusion is used to combine disparate sensory data. The obtained information are more accurate and reliable. In this research, combination of vision, current, strain and vibration sensors for predicting flank wear land is proposed. An optimized adaptive neuro-fuzzy inference system (ANFIS) model is developed to fuse the surface image, motor current, strain and vibration signal features. The structure of proposed ANFIS model has four inputs and one output. The inputs of the model are entropy of surface image (which is filtered by undecimated wavelet transform), time-frequency marginal integral of the motor current, Shannon entropy of strain and Shannon entropy of vibration signals, while output of the model is the flank wear. The results showed that the optimized ANFIS model can be used to fuse the signal features and predict tool flank wear with high accuracy.

کلیدواژه‌ها [English]

  • Cutting Tool
  • Wear
  • Sensor Fusion
  • ANFIS
  • Meta-Heuristic Algorithms
  1. Duro, J. A., Padget, J. A., Bowen, C. R., Kim, H. A., and Nassehi, A. “Multi-Sensor Data Fusion Framework for CNC Machining Monitoring”, Mechanical Systems and Signal Processing , Vol. 66-67,  pp. 505–520, 2016.##
  2. Nouri, M.,  Fussell, B. K., Ziniti, B. L., and Linder, E. “Real-Time Tool Wear Monitoring in Milling Using a Cutting Condition Independent Method”, International Journal of Machine Tools & Manufacture, Vol. 89, PP. 1–13, 2015.##
  3. Teti, R., Jemielniak, K., and Dornfeld, G. O. D. “Advanced Monitoring of Machining Operations”, CIRP Annals - Manufacturing Technology, Vol. 59, pp. 717–739, 2010.##
  4. Dutta, S., Pal, S.K., Mukhopadhyay S., and Sen, R. “Application of Digital Image Processing in Tool Condition Monitoring: A review”, CIRP Journal of Manufacturing Science and Technology, Vol. 6, pp. 212–232, 2013.##
  5. Jaramillo,V. H., Ottewill, J. R., Dudek, R., Lepiarczyk, D., and Pawlik, P. “Condition Monitoring of Distributed Systems Using Two-Stage Bayesian Inference Data Fusion”, Vol. 87, pp. 91–110, 2017.##
  6. Asibu, E. K., Yum, J., and Kim, T. H. “Monitoring Tool Wear Using Classifier Fusion”, Mechanical Systems and Signal Processing, Vol. 85, pp. 651–661, 2017.##
  7. Abdulshahed, A. M., Longstaff, A. P. and Fletcher, S. “The Application of ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools”, Applied Soft Computing, Vol. 27, pp. 158–168, 2015.##
  8. Beruvides, G., Castaño, F., Quiza, R., and  Haber, R. E. “Surface Roughness Modeling and Optimization of Tungsten–Copper Alloys in Micro-Milling Processes”, Measurement, Vol. 86, pp. 246–252, 2016.##
  9. Jovi´c, S., Arsi´c, N., Vukojevi´c, V.,  Anicic, O., and Vujiˇci´c, S. “Determination of the Important Machining Parameters on the Chipshape Classification by Adaptive Neuro-Fuzzy Technique”, Precision Engineering, In press, 2016.##
  10. Danesh, S., Farnoosh, R., and Razzaghnia, T. “Fuzzy Nonparametric Regression Based on Adaptive Neuro Fuzzy Inference System”, Neurocomputing, Vol.173, pp.1450-1460, 2016.##
  11. Danesh, S. “Fuzzy Parameters Estimation via Hybrid Methods”, Hacettepe Journal of Mathematics and Statistics, impress, Doi: 10.15672/HJMS.201614621831.##
  12. Sifuzzaman, M., Islam, M.R., and Ali, M.Z. “Application of Wavelet Transform and Its Advantages Compared to Fourier Transform”, Journal of Physical Sciences, Vol. 13, pp. 121-134, 2009.##
  13. Danesh, M., and Khalili, K. “Determination of Tool Wear in Turning Process Using Undecimated Wavelet Transform and Textural Features”,  Procedia Technology, Vol. 19, pp. 98-105, 2015.##
  14. Khalili, K. and Danesh, M. “Identification of Vibration Level in Metal Cutting Using Undecimated Wavelet Transform and Gray-Level Co-Occurrence Matrix Texture Features”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 229, pp. 205-213, 2015.##
  15. Julesz, B., Gilbert, E., Shepp, L., and Frisch, H. “Inability of Humans to Discriminate between Visual Textures that Agree in Second-Order Statistics Revisited”, Perception, Vol. 2, pp. 391–405, 1973.##
  16. Haralick, H., Shanmugam, K.,  and Dinstein, I. “Textural Features for Image Classification”, IEEE Trans. Syst. Man. Cybern., Vol. 3, No. 6, pp. 610–621, 1973.##
  17. Dutta, S., Datta, A., Chakladar, N., et al. “Detection of Tool Condition from the Turned Surface Images Using an Accurate Grey Level  Co-Occurrence Technique”, Precision Engineering, Vol. 36, pp. 458–466, 2012.##
  18. Alegre, E., Barreiro, J., and Suarez-Castrillon, S.A. “A New Improved Laws-Based Descriptor for Surface Roughness Evaluation”, Int. J. Mach. Tool Manu., Vol. 59, pp. 605–615, 2012.##
  19. Salgado, D. R.,  Cambero, I., Olivenza, J. M. H.,  Sanz-Calcedo, J. G., Lopez, P. J. N., and Plaza, E. G. “Tool Wear Estimation for Different Workpiece Materials Using the Same Monitoring System”  Procedia Engineering, Vol. 63, pp. 608-615, 2013.##
  20. Byrne, G., Dornfeld, D., Inasaki, I., Ko¨ nig, W., and Teti, R.  “Tool Condition Monitoring – The Status of Research and Industrial Application”, CIRP Annals, Vol. 44, No.2, pp. 541–567, 1995.##
  21. Jesus, R. T. R., Gilberto, H. R. I,van, T. V. and  Carlos, J. C. J. “Driver Current Analysis for Sensorless Tool Breakage Monitoring of CNC Milling Machines”, International Journal of Machine Tools & Manufacture, Vol. 43, pp. 1529–1534, 2003.##
  22. Danesh, M., and Khalili, K.  “Tool Wear Condition Monitoring Using Time-Frequency Marginal Integral of Motor Current Signal”, Modares Mechanical Engineering, Vol. 14, No. 16, pp. 181-189, 2015. (in Persian)##
  23. Dimla, E.,  and Dimla, S. “Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations—a Review of Methods”, International Journal of Machine Tools & Manufacture, Vol. 40, pp. 1073–1098, 2006.##
  24. Dimla, D.E., Lister, P.M. “On-Line Metal Cutting Tool Condition Monitoring. I: Force and Vibration Analyses”, International Journal of Machine Tools & Manufacture,Vol. 40, pp. 739–768, 2000.##
  25. Rizal, M. , Ghani, J. A., Nuawi, M. Z., Hassan, C., and Haron, C. “Online  Tool  Wear  Prediction  System  in  the  Turning  Process  Using  an  Adaptive”, Applied Soft Computing, Vol.13, pp. 1960–1968, 2013.##
  26. Schefer C., “Monitoring of Tool Wear in Turning Operations Using Vibration Measurements”, Msc thesis, University of Pretoria,1999.##
  27. Jang, J.S.R. “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Trans Syst Man Cyber, Vol. 23, No. 3, PP.665-685, 1992.##
  28. Jang, J.S.R. “Self-learning Fuzzy Controllers Based on Temporal Back-Bropagation”, IEEE Transactions on Neural Network, Vol.3, pp. 714-723, 1992.##
  29. Kennedy, J. and Eberhart, R.C. “Particle Swarm Optimization”; Proceedings of the IEEE international conference on neural networks 1995.##
  30. Meissner, M., Schmuker, M., and Schneider, G. “Optimized Particle Swarm Optimization (OPSO) and Its Application to Artificial Neural Network Training”, BMC Bioinformatics, Vol.7 , 2006.##
  31. Mitchell, M. “An Introduction to Genetic Algorithms”, MIT Press, Cambridge, MA, 1996.##
  32. Beasley, D., Bull D., and Martin, R. “An Overview of Genetic Algorithms: Part 1, Fundamentals”, University of Cardiff, Cardiff, 1993.##
  33. Beasley, D., Bull, D., and Martin, R. “An Overview of Genetic Algorithms: Part 2, Research Topics”, University of Cardiff, Cardiff, 1993.##
  34. Socha K. and Dorigo, M. “Ant Colony Optimization for Continuous Domains.”, European J. of Operational Research, Vol.185 No.3, PP. 1155-1173, 2008.##
  35. Box, G. E. P., and Muller, M. E. “A Note on the Generation of Random Normal Deviates”, Annals of Math. Statistics, Vol.29 No. 2, PP. 610-611, 1958.##