بررسی تحلیلی ارتعاشات آزاد ساختارهای مختلف نانو لوله های برن نیترید تحت تنش اولیه

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

صنعتی سیرجان

چکیده

در این مقاله اثرات مدول الاستیسیته ساختارهای مختلف (زیگزاگ، کایرال، آرمچیر) بر پاسخ ارتعاشی نانو لوله­ برن نیترید تحت تاثیر تنش اولیه به­صورت تحلیلی بررسی شده است. با استفاده از فرضیات تئوری­های تیر اویلر برنولی و تیر تیموشنکو و تئوری الاستیسیته غیرمحلی، معادلات حاکم بر حرکت و شرایط مرزی با استفاده از اصل همیلتون استخراج شده است. شرایط مرزی بررسی شده، دوسر مفصل، دوسر گیردار، یکسر مفصل– یکسر گیردار و یکسر گیردار- یکسر آزاد است. همچنین مدول الاستیسیته ساختارهای مختلف مورد مطالعه و تاثیر آنها بر روی مقادیر فرکانس طبیعی سامانه بررسی شده است. در نهایت، تاثیر پارامترهای مختلف از جمله قطر نانولوله، اثر تنش اولیه، پارامتر غیرمحلی و پارامتر­های هندسی نانو­لوله برن نیترید بر روی فرکانس طبیعی انواع ساختار­ها بررسی شده است. نتایج نشان می­دهد که افزایش پارامتر غیرمحلی و اثرات تنش اولیه منجر به کاهش فرکانس طبیعی می­شود. از سویی دیگر مشاهده شد که افزایش قطر نانو­لوله موجب افزایش فرکانس سامانه شده و با افزایش قطر بیشتر از 6/0 نانومتر، تغییری در نتایج مشاهده نمی­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analytical Analysis for Free Vibration of Different Arrangements of BNNTs under Initially Stress

نویسندگان [English]

  • mohammad hoseini
  • abbas zandi baghche maryam
sirjan
چکیده [English]

In this research, an analytical analysis is used to investigate the effects of elasticity modulus of different arrangements (zigzag, chiral, armchair) on the vibrations responses of boron nitride nanotubes (BNNTs) under initially stress. By using the Euler– Bernoulli and Timoshenko nonlocal elasticity theories, the governing equation of motion and boundary conditions are derived via Hamilton’s principle. The analysis considers beams with four different boundary conditions, namely pinned-pinned, fixed-fixed, pinned-fixed and fixed-free. The elasticity modulus of zigzag, armchair and chiral is studied and the effects of these arrangements on natural frequency are investigated. Finally, the effect of various parameters such as nanotube diameter, initial stress, nonlocal parameter and geometric parameters of BNNTs on the natural frequency of zigzag, armchair and chiral BNNTs has been studied. The results show that the natural frequency is decreased when nonlocal parameter and initial stress increase. Furthermore, we observe an increase in natural frequency as nanotube diameter is increased up to 0.6nm while afterwards there is no noticeable change in natural frequency.

کلیدواژه‌ها [English]

  • Natural Frequency
  • Boron Nitride Nanotubes
  • Elasticity Modulus
  • Different Arrangement of Nanotube
  • Initial Stress
  1. Iglesias, D., Senokos, E., Aleman, B., Cabana, L., Navío, C., Marcilla, R., Prato, M., Vilatela, J. J. and Marchesan, S. “Gas-phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors”, ACS Applied Materials & Interfaces, Vol. 1 No. 1, 2018.##
  2. Nayak, R. “Preparation and Application of Carbon Nanotubes Composites”, Current and Future Developments in Nanomaterials and Carbon Nanotubes, Vol. 1, No. 1, pp. 135-150, 2018.##
  3. Athanassiou, C., Kavallieratos, N., Benelli, G., Losic, D., Rani, P. U. and Desneux, N. “Nanoparticles for Pest Control: Current Status and future Perspectives”, Journal of Pest Science, Vol. 10, No. 1, pp. 1-15, 2018.##
  4. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H. and Nguyen-Thoi, T. “An Isogeometric Approach for Dynamic Response of laminated FG-CNT reinforced Composite Plates Integrated with Piezoelectric Layers”, Computer Methods in Applied Mechanics and Engineering, Vol. 332, No. 1, pp. 25-46, 2018.##
  5. Sadeghi-Goughari, M., Jeon, S. and Kwon, H.-J. “Flutter Instability of cantilevered Carbon Nanotubes Caused by Magnetic Fluid Flow Subjected to a longitudinal Magnetic Field”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 10, No. 1, 2018.##
  6. Sahmani, S., Aghdam, M. M. and Rabczuk, T. “Nonlinear Bending of Functionally Graded Porous Micro/Nano-Beams Reinforced with Graphene Platelets Based Upon Nonlocal Strain Gradient Theory”, Composite Structures, Vol. 186, No. 1, pp. 68-78, 2018.##
  7. Rughoobur, G., Sugime, H., DeMiguel-Ramos, M., Mirea, T., Zheng, S., Robertson, J., Iborra, E. and Flewitt, A.J. “Carbon Nanotube Isolation Layer Enhancing in-liquid Quality-Factors of thin film Bulk Acoustic Wave Resonators for Gravimetric Sensing”, Sensors and Actuators B: Chemical, Vol. 55, No. 1, 2018.##
  8. Anwar, M.F., Yadav, N. and Jain, S. “Carbon Nanotubes in Drug Delivery”, Current and Future Developments in Nanomaterials and Carbon Nanotubes, Vol. 1, No. 1, pp. 184-202, 2018.##
  9. Bahaadini, R., Saidi, A. R. and Hosseini, M. “On Dynamics of Nanotubes Conveying Nanoflow”, International Journal of Engineering Science, Vol. 123, No. 1, pp. 181-196, 2018.##
  10. Saffari, S., Hashemian, M. and Toghraie, D. “Dynamic Stability of Functionally Graded Nanobeam Based on Nonlocal Timoshenko Theory Considering Surface Effects”, Physica B: Condensed Matter, Vol. 520, No. 1, pp. 97-105, 2017.##
  11. Preethi, K., Raghu, P., Rajagopal, A. and Reddy, J. “Nonlocal Nonlinear Bending and free Vibration Analysis of a Rotating Laminated Nano Cantilever Beam”, Mechanics of Advanced Materials and Structures, Vol. 25, No. 5, pp. 439-450, 2018.##
  12. Hossain, M., Hao, T. and Silverman, B. “Stillinger–Weber Potential for Elastic and fracture Properties in Graphene and Carbon Nanotubes”, Journal of Physics: Condensed Matter, Vol. 30, No. 5, pp. 559-580, 2018.##
  13. Shokrieh, M.M. and Rafiee, R. “On the tensile Behavior of an Embedded Carbon Nanotube in Polymer Matrix with Non-bonded Interphase Region”, Composite Structures, Vol. 92, No. 3, pp. 647-652, 2010.##
  14. Lei, X., Natsuki, T., Shi, J. and Ni, Q.Q. “Analysis of Carbon Nanotubes on the Mechanical Properties at Atomic Scale”, Journal of Nanomaterials, Vol. 2011, No. 1, pp. 110-125, 2011.##
  15. Parvaneh, V. and Shariati, M. “Effect of Defects and Loading on Prediction of Young’s Modulus of SWCNTs”, Acta Mechanica, Vol. 216, No. 1, pp. 281-292, 2011.##
  16. Lu, X. and Hu, Z. “Mechanical Property Evaluation of Single-Walled Carbon Nanotubes by Finite Element Modeling“, Composites Part B: Engineering, Vol. 43, No. 4, pp. 1902-1913, 2012.##
  17. Ayatollahi, M., Shadlou, S. and Shokrieh, M. “Multiscale Modeling for Mechanical Properties of Carbon Nanotube Reinforced Nanocomposites Subjected to Different Types of Loading”, Composite Structures, Vol. 93, No. 9, pp. 2250-2269, 2011.##
  18. Kang, Z., Li, M. and Tang, Q. “Buckling Behavior of carbon Nanotube-Based Intramolecular Junctions Under Compression: Molecular Dynamics Simulation and Finite Element Analysis”, Computational Materials Science, Vol. 50, No. 1, pp. 253-259, 2010.##
  19. Wang, X. and Guo, X. “Numerical Simulation for Finite Deformation of Single-Walled Carbon Nanotubes At Finite Temperature Using Temperature-Related Higher Order Cauchy-Born Rule Based Quasi-Continuum Model”, Computational Materials Science, Vol. 55, No. 1, pp. 273-283, 2012.##
  20. Shima, H., Ghosh, S., Arroyo, M., Iiboshi, K. and Sato, M. “Thin-shell Theory Based Analysis of Radially Pressurized Multiwall Carbon Nanotubes”, Computational Materials Science, Vol. 52, No. 1, pp. 90-104, 2012.##
  21. Paıdoussis, M. and Li, G. “Pipes Conveying Fluid: a Model Dynamical Problem”, Journal of Fluids and Structures, Vol. 7, No. 2, pp. 137-204, 1993.##
  22. Eringen, A.C. “On differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves”, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.##
  23. Ansari, R., Mirnezhad, M. and Sahmani, S. “Prediction of Chirality-And Size-Dependent Elastic Properties of Single-Walled Boron Nitride Nanotubes Based on an Accurate Molecular Mechanics Model”, Superlattices and Microstructures, Vol. 80, No. 1, pp. 196-205, 2015.##
  24. C. M. Wang, Zhang, Y. Y. and He, X. Q. “Vibration of Nonlocal Timoshenko Beams”, Nanotechnology, Vol. 18, No. 1, pp. 1-9, 2007.##
  25. Cox, B. J. and Hill, J. M. “Exact and Approximate Geometric Parameters for Carbon Nanotubes Incorporating Curvature”, Carbon, Vol. 45, No. 1, pp. 1453-1465, 2007.##
  26. Thomson, W. “Theory of Vibration with Applications”, George Allen, Los Angeles, United States, 2012.##
  27. Santosh, M., Maiti, P.K. and Sood, A. “Elastic Properties of Boron Nitride Nanotubes and Their Comparison with Carbon Nanotubes”, Journal of Nanoscience and Nanotechnology, Vol. 9, No. 9, pp. 5425-5430, 2009.##
  28. Li, C. and Chou, T.-W. “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes”, International Journal of Solids and Structures, Vol. 40, No. 10, pp. 2487-2499, 2003.##
  29. Prasad, B. “On the Response of a Timoshenko Beam Under Initial Stress to a Moving Load”, International Journal of Engineering Science, Vol. 19, No. 5, pp. 615-628, 1981.##