تعیین عمر مفید باقیمانده تجهیزات مبتنی بر تخمین مراحل زوال، با استفاده از روش ARMRS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه جامع امام حسین (ع)

2 دانشکده صنایع، دانشگاه علم و صنعت

3 دانشکده مکانیک، علم و صنعت

چکیده

 
پایش وضعیت، یکی از مهم­ترین روش­های مدیریت سلامت تجهیزات و نگهداری و تعمیرات (نگهداشت) مبتنی بر شرایط است. در چرخه «مدیریت سلامت و پیش‌بینی عیوب» که به‌نوعی شکل توسعه‌یافته‌تری برای نگهداشت مبتنی­بر شرایط است، ارزیابی وضعیت به‌عنوان    مهم­ترین جزء این چرخه به­شمار می‌آید. در این تحقیق، مدلی ارائه گردیده است که مبتنی­بر آن، می­توان با استفاده از ارزیابی وضعیت تجهیز، عمر مفید باقیمانده­را تخمین زد. در این مدل با استفاده از تعریف یک ویژگی جدید برای ارتعاش تجهیز، شبیه­سازی و پیش­بینی آن با استفاده از مدل رژیم سوئیچینگ مارکوف خود رگرسیون و ارائه­ رویکرد جدید جهت تلفیق اطلاعات حسگرهای پایش وضعیت مبتنی­بر خوشه­بندی فازی و تئوری دمپستر- شفر، وضعیت­ زوال تجهیز تعیین می‌گردد و عمر مفید باقیمانده­ آن تخمین زده می­شود. به‌منظور ارزیابی مدل، از داده­های مسابقه‌ی داده انجمن مدیریت سلامت و پیش‌بینی عیوب در سال 2012 که به‌منظور پیش­بینی عمر مفید باقیمانده­ یاتاقان، فراهم گردیده، استفاده و نتایج مطالعه با نتایج برنده آن، مقایسه شده است. نتایج به‌دست‌آمده از مقایسه، نشان‌دهنده‌ قابلیت رقابت مدل پیشنهادی با مدل برنده­ مسابقه داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Determine the Remaining Useful Life in Rotating Equipment, based on Prognostics and the combination of Degradation Processes, Using the ARMRS & Theory of Evidence

نویسندگان [English]

  • saeed ramezani 1
  • alireza moini 2
  • mohammad riyahi 3
1 emam hosein
2 elm o sanAt
3 elm o sanAt
چکیده [English]

ABSTRACT
Condition Assessment is one of the most significant techniques of the equipment health management. PHM methodology cycle, is a developed form of Condition Based Maintenance (CBM). Condition Assessment is the most important step of this cycle. In this study, based on the model presented, using equipment Condition Assessment, the Remaining Useful Life (RUL) is estimated. Using the simulation and forecasting of a new feature for vibration of the equipment by Autoregressive Markov Regime Switching (ARMRS) method, equipment health condition is determined. Prior to forecasting the condition of the equipment, the equipment degradation state is determined by the fuzzy C-means clustering method. Based on the current state of equipment and pre-determined state of degradation, the Remaining Useful Life of the equipment is estimated. In order to evaluate the model, sensor data for PHM 2012 challenge have been used to forecast the bearing’s Remaining Useful Life And the results of the study have been compared with the winning results. One of the specifications of the proposed model is to determine the confidence intervals for Remaining Useful Life. Its innovations include the use of fuzzy clustering and evidence theory to integrate data and use Autoregressive Markov Regime Switching to prognosis.

کلیدواژه‌ها [English]

  • : Remaining Useful Life (RUL)
  • Prognostics & Health Management (PHM)
  • Autoregressive Markov Regime Switching (ARMRS)
  • Wavelet Decomposition
  • Theory of Evidence
  • Fuzzy clustering
  • Fuzzy C-Means
  • Kurtosis-Entropy
  • Feature
  • Degradation
Jardine, A.K. “Optimizing Condition Based Maintenance Decisions”; Proc. reliability and maintainability symposiu, IEEE, 2002.##
2.             Jardine, A.K., Lin, D., and Banjevic, D. “A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance”, Mechanical systems and signal processing, Vol. 20, No. 7, pp. 1483-1510, 2006.##
3.             An, D., Kim, N.H., and Choi J. H. “Practical Options for Selecting Data-Driven or Physics-Based Prognostics Algorithms with Reviews”, Reliability Engineering & System Safety, Vol. 133, No. 1, pp. 223-236, 2015.##
4.             Lei, Y., Li, N., Guo, L., Li, N., Yan, T., and Lin, J. “Machinery Health Prognostics: A Systematic Review from Data Acquisition to Rul Prediction”, Mechanical Systems and Signal Processing, Vol. 104, No. 1, pp. 799-834, 2018.##
5.             Zurita, D., Carino, J. A., Delgado, M., and Ortega, J. A. “Distributed Neuro-Fuzzy Feature Forecasting Approach for Condition Monitoring”; Proc. Emerging Technology and Factory Automation, IEEE, 2014.##
6.             Li, N., Lei, Y., Lin, J., and Ding, S. X. “An Improved Exponential Model for Predicting Remaining Useful Life of Rolling Element Bearings”, IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, pp. 7762-7773, 2015.##
7.             Carino, J., Zurita, D., Delgado, M., Ortega, J., and Romero-Troncoso, R. “Remaining Useful Life Estimation of Ball Bearings by Means of Monotonic Score Calibration”; Proc. Industrial Technology (ICIT), IEEE, 2015.##
8.             Ren, L., Sun, Y., Wang, H., and Zhang, L. “Prediction of Bearing Remaining Useful Life with Deep Convolution Neural Network”, IEEE Access, Vol. 6, No. 1, pp. 13041-13049, 2018.##
9.             Deng, S., Chen, Z., and Chen, Z. “Auxiliary Particle Filter-Based Remaining Useful Life Prediction of Rolling Bearing”; Proc. Sensing, Diagnostics, Prognostics, and Control (SDPC), IEEE, 2017.##
10.           Boškoski, P., Gašperin, M., and Petelin, D. “Bearing Fault Prognostics Based on Signal Complexity and Gaussian Process Models”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##
11.           Wang, T. “Bearing Life Prediction Based on Vibration Signals: A Case Study and Lessons Learned”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##
12.           Porotsky, S. and Bluvband, Z. “Remaining Useful Life Estimation for Systems with Non-Trendability Behaviour”; Conference on Prognostics and Health Management, IEEE, 2012.##
13.           Sutrisno, E., Oh, H., Vasan, A. S. S., and Pecht, M. “Estimation of Remaining Useful Life of Ball Bearings Using Data Driven Methodologies”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##
14.           Mosallam, A., Medjaher, K., and Zerhouni, N. “Time Series Trending for Condition Assessment and Prognostics”, Journal of manufacturing technology management, Vol. 25, No. 4, pp. 550-567, 2014.##
15.           Wang, L., Zhang, L., and Wang, X. Z. “Reliability Estimation and Remaining Useful Lifetime Prediction for Bearing Based on Proportional Hazard Model”, Journal of Central South University, Vol. 22, No. 12, pp. 4625-4633, 2015.##
16.           Li, H., and Wang, Y. “Rolling Bearing Reliability Estimation Based on Logistic Regression Model”; Proc. Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), IEEE, 2013.##
17.           Hong, S., Zhou, Z., Zio, E., and Wang, W.,  “An Adaptive Method for Health Trend Prediction of Rotating Bearings”, Digital Signal Processing, Vol. 35, No. 1, pp. 117-123, 2014.##
18.           Lei, Y., Li, N., and Lin, J. “A New Method Based on Stochastic Process Models for Machine Remaining Useful Life Prediction”, IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 12, pp. 2671-2684, 2016.##
19.           Huang, Z., Xu, Z., Ke, X., Wang, W., and Sun, Y. “Remaining Useful Life Prediction for an Adaptive Skew-Wiener Process Model”, Mechanical Systems and Signal Processing, Vol. 87, No. 1, pp. 294-306, 2017.##
20.           Zhao, M., Tang, B., and Tan, Q. “Bearing Remaining Useful Life Estimation Based on Time–Frequency Representation and Supervised Dimensionality Reduction”, Measurement, Vol. 86, No. 1, pp. 41-55, 2016.##
21.           Niu, G., Qian, F., and Choi, B. K. “Bearing Life Prognosis Based on Monotonic Feature Selection and Similarity Modeling”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 230, No. 18, pp. 3183-3193, 2016.##
22.           Liao, L., Jin, W., and Pavel, R. “Enhanced Restricted Boltzmann Machine with Prognosability Regularization for Prognostics and Health Assessment”, IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, pp. 7076-7083, 2016.##
23.           Ren, L., Sun, Y., Cui, J., and Zhang, L. “Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks”, Journal of Manufacturing Systems, Vol. No. 1, pp. 2018.##
24.           Mosallam, A., Medjaher, K., and Zerhouni, N. “Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction”, Journal of Intelligent Manufacturing, Vol. 27, No. 5, pp. 1037-1048, 2016.##
25.           Loutas, T. H., Roulias, D., and Georgoulas, G. “Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression”, IEEE Transactions on Reliability, Vol. 62, No. 4, pp. 821-832, 2013.##
26.           Deng, Y., Barros, A., and Grall, A. “Degradation Modeling Based on a Time-Dependent Ornstein-Uhlenbeck Process and Residual Useful Lifetime Estimation”, IEEE Trans. Reliability, Vol. 65, No. 1, pp. 126-140, 2016.##
27.           Hinchi, A.Z., and Tkiouat, M. “Rolling Element Bearing Remaining Useful Life Estimation Based on a Convolutional Long-Short-Term Memory Network”, Procedia Computer Science, Vol. 127, No. 1, pp. 123-132, 2018.##
28.           Xiao, L., Chen, X., Zhang, X., and Liu, M. “A Novel Approach for Bearing Remaining Useful Life Estimation under Neither Failure nor Suspension Histories Condition”, Journal of Intelligent Manufacturing, Vol. 28, No. 8, pp. 1893-1914, 2017.##
29.           Tian, Z. “An Artificial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring”, Journal of Intelligent Manufacturing, Vol. 23, No. 2, pp. 227-237, 2012.##
30.           Ali, J. B., Chebel-Morello, B., Saidi, L., Malinowski, S., and Fnaiech, F.,  “Accurate Bearing Remaining Useful Life Prediction Based on Weibull Distribution and Artificial Neural Network”, Mechanical Systems and Signal Processing, Vol. 56, No. 1, pp. 150-172, 2015.##
31.           Javed, K., Gouriveau, R., Zemouri, R., and Zerhouni, N. “Features selection procedure for prognostics: An approach based on predictability”, IFAC Proceedings Volumes, Vol. 45, No. 20, pp. 25-30, 2012.##
32.           Pearson, R.K. “Outliers in Process Modeling and Identification”, IEEE Transactions on control systems technology, Vol. 10, No. 1, pp. 55-63, 2002.##
33.           Babu, C.N., and Reddy, B.E. “A Moving-Average Filter Based Hybrid Arima–Ann Model for Forecasting Time Series Data”, Applied Soft Computing, Vol. 23, No. 1, pp. 27-38, 2014.##
34.           Bezdek, J.C., Ehrlich, R., and Full, W. “Fcm: The Fuzzy C-Means Clustering Algorithm”, Computers & Geosciences, Vol. 10, No. 2, pp. 191-203, 1984.##
35.           Sentz, K., and Ferson, S. “Combination of Evidence in Dempster-Shafer Theory”, Sandia National Laboratories, Albuquerque, United States, 2002.##
36.           Hamilton, J.D. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle”, Econometrica: Journal of the Econometric Society, Vol. 57 No. 2, pp. 357-384, 1989.##
37.           Perlin, M. “Ms_Regress-the Matlab Package for Markov Regime Switching Models”, Vol. 1, No. 1, pp. 2015.##
38.           Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., and Varnier, C. “Pronostia: An Experimental Platform for Bearings Accelerated Degradation Tests”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##