تعیین عمر مفید باقیمانده تجهیزات مبتنی بر تخمین مراحل زوال، با استفاده از روش ARMRS

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه جامع امام حسین (ع)

2 دانشکده صنایع، دانشگاه علم و صنعت

3 دانشکده مکانیک، علم و صنعت

چکیده

 
پایش وضعیت، یکی از مهم­ترین روش­های مدیریت سلامت تجهیزات و نگهداری و تعمیرات (نگهداشت) مبتنی بر شرایط است. در چرخه «مدیریت سلامت و پیش‌بینی عیوب» که به‌نوعی شکل توسعه‌یافته‌تری برای نگهداشت مبتنی­بر شرایط است، ارزیابی وضعیت به‌عنوان    مهم­ترین جزء این چرخه به­شمار می‌آید. در این تحقیق، مدلی ارائه گردیده است که مبتنی­بر آن، می­توان با استفاده از ارزیابی وضعیت تجهیز، عمر مفید باقیمانده­را تخمین زد. در این مدل با استفاده از تعریف یک ویژگی جدید برای ارتعاش تجهیز، شبیه­سازی و پیش­بینی آن با استفاده از مدل رژیم سوئیچینگ مارکوف خود رگرسیون و ارائه­ رویکرد جدید جهت تلفیق اطلاعات حسگرهای پایش وضعیت مبتنی­بر خوشه­بندی فازی و تئوری دمپستر- شفر، وضعیت­ زوال تجهیز تعیین می‌گردد و عمر مفید باقیمانده­ آن تخمین زده می­شود. به‌منظور ارزیابی مدل، از داده­های مسابقه‌ی داده انجمن مدیریت سلامت و پیش‌بینی عیوب در سال 2012 که به‌منظور پیش­بینی عمر مفید باقیمانده­ یاتاقان، فراهم گردیده، استفاده و نتایج مطالعه با نتایج برنده آن، مقایسه شده است. نتایج به‌دست‌آمده از مقایسه، نشان‌دهنده‌ قابلیت رقابت مدل پیشنهادی با مدل برنده­ مسابقه داده است.

کلیدواژه‌ها


Jardine, A.K. “Optimizing Condition Based Maintenance Decisions”; Proc. reliability and maintainability symposiu, IEEE, 2002.##

2.             Jardine, A.K., Lin, D., and Banjevic, D. “A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance”, Mechanical systems and signal processing, Vol. 20, No. 7, pp. 1483-1510, 2006.##

3.             An, D., Kim, N.H., and Choi J. H. “Practical Options for Selecting Data-Driven or Physics-Based Prognostics Algorithms with Reviews”, Reliability Engineering & System Safety, Vol. 133, No. 1, pp. 223-236, 2015.##

4.             Lei, Y., Li, N., Guo, L., Li, N., Yan, T., and Lin, J. “Machinery Health Prognostics: A Systematic Review from Data Acquisition to Rul Prediction”, Mechanical Systems and Signal Processing, Vol. 104, No. 1, pp. 799-834, 2018.##

5.             Zurita, D., Carino, J. A., Delgado, M., and Ortega, J. A. “Distributed Neuro-Fuzzy Feature Forecasting Approach for Condition Monitoring”; Proc. Emerging Technology and Factory Automation, IEEE, 2014.##

6.             Li, N., Lei, Y., Lin, J., and Ding, S. X. “An Improved Exponential Model for Predicting Remaining Useful Life of Rolling Element Bearings”, IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, pp. 7762-7773, 2015.##

7.             Carino, J., Zurita, D., Delgado, M., Ortega, J., and Romero-Troncoso, R. “Remaining Useful Life Estimation of Ball Bearings by Means of Monotonic Score Calibration”; Proc. Industrial Technology (ICIT), IEEE, 2015.##

8.             Ren, L., Sun, Y., Wang, H., and Zhang, L. “Prediction of Bearing Remaining Useful Life with Deep Convolution Neural Network”, IEEE Access, Vol. 6, No. 1, pp. 13041-13049, 2018.##

9.             Deng, S., Chen, Z., and Chen, Z. “Auxiliary Particle Filter-Based Remaining Useful Life Prediction of Rolling Bearing”; Proc. Sensing, Diagnostics, Prognostics, and Control (SDPC), IEEE, 2017.##

10.           Boškoski, P., Gašperin, M., and Petelin, D. “Bearing Fault Prognostics Based on Signal Complexity and Gaussian Process Models”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##

11.           Wang, T. “Bearing Life Prediction Based on Vibration Signals: A Case Study and Lessons Learned”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##

12.           Porotsky, S. and Bluvband, Z. “Remaining Useful Life Estimation for Systems with Non-Trendability Behaviour”; Conference on Prognostics and Health Management, IEEE, 2012.##

13.           Sutrisno, E., Oh, H., Vasan, A. S. S., and Pecht, M. “Estimation of Remaining Useful Life of Ball Bearings Using Data Driven Methodologies”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##

14.           Mosallam, A., Medjaher, K., and Zerhouni, N. “Time Series Trending for Condition Assessment and Prognostics”, Journal of manufacturing technology management, Vol. 25, No. 4, pp. 550-567, 2014.##

15.           Wang, L., Zhang, L., and Wang, X. Z. “Reliability Estimation and Remaining Useful Lifetime Prediction for Bearing Based on Proportional Hazard Model”, Journal of Central South University, Vol. 22, No. 12, pp. 4625-4633, 2015.##

16.           Li, H., and Wang, Y. “Rolling Bearing Reliability Estimation Based on Logistic Regression Model”; Proc. Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), IEEE, 2013.##

17.           Hong, S., Zhou, Z., Zio, E., and Wang, W.,  “An Adaptive Method for Health Trend Prediction of Rotating Bearings”, Digital Signal Processing, Vol. 35, No. 1, pp. 117-123, 2014.##

18.           Lei, Y., Li, N., and Lin, J. “A New Method Based on Stochastic Process Models for Machine Remaining Useful Life Prediction”, IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 12, pp. 2671-2684, 2016.##

19.           Huang, Z., Xu, Z., Ke, X., Wang, W., and Sun, Y. “Remaining Useful Life Prediction for an Adaptive Skew-Wiener Process Model”, Mechanical Systems and Signal Processing, Vol. 87, No. 1, pp. 294-306, 2017.##

20.           Zhao, M., Tang, B., and Tan, Q. “Bearing Remaining Useful Life Estimation Based on Time–Frequency Representation and Supervised Dimensionality Reduction”, Measurement, Vol. 86, No. 1, pp. 41-55, 2016.##

21.           Niu, G., Qian, F., and Choi, B. K. “Bearing Life Prognosis Based on Monotonic Feature Selection and Similarity Modeling”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 230, No. 18, pp. 3183-3193, 2016.##

22.           Liao, L., Jin, W., and Pavel, R. “Enhanced Restricted Boltzmann Machine with Prognosability Regularization for Prognostics and Health Assessment”, IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, pp. 7076-7083, 2016.##

23.           Ren, L., Sun, Y., Cui, J., and Zhang, L. “Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks”, Journal of Manufacturing Systems, Vol. No. 1, pp. 2018.##

24.           Mosallam, A., Medjaher, K., and Zerhouni, N. “Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction”, Journal of Intelligent Manufacturing, Vol. 27, No. 5, pp. 1037-1048, 2016.##

25.           Loutas, T. H., Roulias, D., and Georgoulas, G. “Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression”, IEEE Transactions on Reliability, Vol. 62, No. 4, pp. 821-832, 2013.##

26.           Deng, Y., Barros, A., and Grall, A. “Degradation Modeling Based on a Time-Dependent Ornstein-Uhlenbeck Process and Residual Useful Lifetime Estimation”, IEEE Trans. Reliability, Vol. 65, No. 1, pp. 126-140, 2016.##

27.           Hinchi, A.Z., and Tkiouat, M. “Rolling Element Bearing Remaining Useful Life Estimation Based on a Convolutional Long-Short-Term Memory Network”, Procedia Computer Science, Vol. 127, No. 1, pp. 123-132, 2018.##

28.           Xiao, L., Chen, X., Zhang, X., and Liu, M. “A Novel Approach for Bearing Remaining Useful Life Estimation under Neither Failure nor Suspension Histories Condition”, Journal of Intelligent Manufacturing, Vol. 28, No. 8, pp. 1893-1914, 2017.##

29.           Tian, Z. “An Artificial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring”, Journal of Intelligent Manufacturing, Vol. 23, No. 2, pp. 227-237, 2012.##

30.           Ali, J. B., Chebel-Morello, B., Saidi, L., Malinowski, S., and Fnaiech, F.,  “Accurate Bearing Remaining Useful Life Prediction Based on Weibull Distribution and Artificial Neural Network”, Mechanical Systems and Signal Processing, Vol. 56, No. 1, pp. 150-172, 2015.##

31.           Javed, K., Gouriveau, R., Zemouri, R., and Zerhouni, N. “Features selection procedure for prognostics: An approach based on predictability”, IFAC Proceedings Volumes, Vol. 45, No. 20, pp. 25-30, 2012.##

32.           Pearson, R.K. “Outliers in Process Modeling and Identification”, IEEE Transactions on control systems technology, Vol. 10, No. 1, pp. 55-63, 2002.##

33.           Babu, C.N., and Reddy, B.E. “A Moving-Average Filter Based Hybrid Arima–Ann Model for Forecasting Time Series Data”, Applied Soft Computing, Vol. 23, No. 1, pp. 27-38, 2014.##

34.           Bezdek, J.C., Ehrlich, R., and Full, W. “Fcm: The Fuzzy C-Means Clustering Algorithm”, Computers & Geosciences, Vol. 10, No. 2, pp. 191-203, 1984.##

35.           Sentz, K., and Ferson, S. “Combination of Evidence in Dempster-Shafer Theory”, Sandia National Laboratories, Albuquerque, United States, 2002.##

36.           Hamilton, J.D. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle”, Econometrica: Journal of the Econometric Society, Vol. 57 No. 2, pp. 357-384, 1989.##

37.           Perlin, M. “Ms_Regress-the Matlab Package for Markov Regime Switching Models”, Vol. 1, No. 1, pp. 2015.##

38.           Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., and Varnier, C. “Pronostia: An Experimental Platform for Bearings Accelerated Degradation Tests”; Proc. Prognostics and Health Management (PHM), IEEE, 2012.##