تحلیل تجربی انتقال حرارت یک ردیف جت برخوردی به سطح مقعر نامتقارن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

در این تحقیق تلاش جدیدی برای بررسی جریان و انتقال حرارت یک ردیف جت برخوردی به سطح مقعر نامتقارن استوانه ای انجام شده است. در این راستا از سطوح مقعر نامتقارن استوانه ای با شعاع های ۸ و۱۲و ۲۴ سانتیمتر استفاده شده است. به منظور ایجاد شار حرارتی ثابت در سطح از یک گرمکن سیلیکونی با توان ۲۵۰۰ وات بر متر مربع استفاده شده است. به منظور جلوگیری از اتلاف حرارت سطح مقعر عایق بندی شده و دمای نقاط مختلف توسط یک دوربین حرارتی مادون قرمز در حالت پایا اندازه گیری شده است. سرعت جت از دو روش سرعت سنج سیم داغ و لوله پیتوت اندازه گیری شده است. تعداد پنج جت با فاصله بی بعد جت تا جت (p/d) ۸ و۴ و فاصله بی بعد جت تا سطح برخورد (H/d) ۲ و۴ مورد بررسی قرار گرفته است. همچنین بررسی توزیع عدد ناسلت روی سطح مقعر نامتقارن در اعداد رینولدز ۱۰۰۰۰ و ۲۰۰۰۰ و۳۰۰۰۰ انجام شده است. تحلیل نتایج نشان می دهد در یک سطح نامتقارن قسمتی از سطح دارای ناسلت بالاتری است که نسبت انحنای بیشتری داشته باشد٬ همچنین با کاهش فاصله جت تا جت توزیع ناسلت دارای مقدار بالاتری است وکاهش فاصله بی بعد جت تا سطح برخورد و افزایش عدد رینولدز سبب افزایش عدد ناسلت می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental investigation of heat transfer under a row impinging jets on an asymmetric concave surface

نویسندگان [English]

  • sohrab asghari
  • m r
semnan
چکیده [English]

In the present paper experimental study has been performed to investigate heat transfer under row of jets impinging to an asymmetric concave surface. In this regard two asymmetric concave surface with curvature radiuses of (8, 12) and (8 , 24) cm have been considered. Constant heat flux of 2000 W/m2 is applied on the concave surface using a silicon rubber heater mat. In the steady-state condition the temperature distribution of the concave surface is measured with an infrared camera. The studies of asymmetric flow and heat transfer in asymmetric surfaces have been carried out for three Reynolds numbers of 10000, 20000 and 30000. Results show that, the concave surface with lower curvature radius has more values of Nusselt number distributions. The present results confirm that the Nusselt distribution is asymmetry along the S axis. In the axial direction, symmetry distribution is observed for Nusselt number.

  1. Bunker, R. S., & Metzger, D. E. “Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling without Film Coolant Extraction”, J. Turbomach, Vol. 112, No. 3 451-458, 1990.##
  2. Lee, D. H., Chung, Y. S., & Won, S. Y. “The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet” Int. J. Heat Mass Tran. Vo. 13, No. 42, 2489-2497, 1999.##
  3. Kumar, B. R. & Prasad, B. V. S. S. S. “Computational Flow and Heat Transfer of a Row of Circular Jets Impinging on a Concave Surface”, Heat Mass Transfer, Vol. 44, No. 6, pp. 667-678, 2007.##
  4. Gardon, R. & Akfirat, J. C. “Heat Transfer Characteristics of Impinging Two Dimensional Air Jets”, J. Heat. Trans, Vol. 88, No. 1, pp. 101-108, 1966.##
  5. Iacovides, H., Kounadis, D., Launder, B. E., Li, J., & Xu, Z. “Experimental Study of the Flow and Thermal Development of a Row of Cooling Jets Impinging on a Rotating Concave Surface”, J. Turbomach, Vol. 127, No. 1, pp. 222-229, 2005.##
  6. Fenot, M., Dorignac, E., & Vullierme, J. J. “An Experimental Study on Hot Round Jets Impinging a Concave Surface”, Int. J. Heat Fluid Fl, Vol. 29, No. 4, pp. 945-956, 2008.##
  7. Martin, E. L., Wright, L. M., & Crites, D. C. “Impingement Heat Transfer Enhancement on a Cylindrical Leading Adge Model with Varying Jet Temperatures”, J. Turbomach, Vol. 135, No. 3, 2012.##
  8. Rajabi Zargarabadi, M., Rezaei, E., & Yousefi-Lafouraki, B. “Numerical Analysis of Turbulent Flow and Heat Transfer of Sinusoidal Pulsed Jet Impinging on an Asymmetrical Concave Surface” Appl. Therm. Eng., Vol. 128, No. 1, pp. 578-585, 2018.##
  9. Hadipour, A., & Rajabi Zargarabadi, M. “Heat Transfer and Flow Characteristics of Impinging Jet on a Concave Surface at Small Nozzle to Surface Distances”, Appl. Therm. Eng, Vol. 138, No. 1, pp. 534-541, 2018.##

10. Katti, V., Sudheer, S., & Prabhu, S. V. “Pressure Distribution on a Semi- Circular Concave Surface Impinged by a Single Row of Circular Jets”, Exp Therm Fluid Sci, Vol. 46, No. 1, pp. 162- 174, 2013.##

11. Yang, L., Ren, J., Jiang, H., & Ligrani, P. “Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Leading Edge Passage”, Int. J. Heat Mass Tran., Vol. 71, No. 1, pp. 57-68, 2014.##

12. Elebiary, K., & Taslim, M. E. “Experimental/ Numerical Crossover Jet Impingement in an Airfoil Leading Edge Cooling Channel”, J. Turbomach, Vol. 135, No. 1, pp. 1-12, 2013.##

  1. 13.  Ahmadi, H., Moghari, R. M., Esmailpour, K., & Mujumdar, A. S. “Numerical Investigation of Semi-Confined Turbulent Slot Jet Impingement on a Concave Surface Ssing an Al2O3–Water Nano Fluid”, Appl Math Model, Vol. 40. pp. 1110-1125,  No. 1125, 2016.##

14. Yang, B., Chang, S., Wu, H., Zhao, Y., & Leng, M. “Experimental and Numerical Investigation of Heat Transfer in an Array of Impingement Jets on a Concave Surface”, Appl. Therm. Eng., Vol.127, No. 1, pp. 473-483, 2016.##

15. Zhou, Y., Lin, G., Bu, X., Bai, L., & Wen, D. “Experimental Study of Curvature Effects on Jet Impingement Heat Transfer on Concave Surfaces”, Chinese J of Aeronaut, Vol. 30, No. 2, pp. 586-594, 2017.##

16. Patil, V. S. & Vedula, R. P. “Local Heat Transfer for Jet Impingement on a Concave Surface Including Injection Nozzle Length to Diameter and Curvature Ratio Effects”, Exp. Therm Fluid Sci., Vol. 92, No. 1, pp.375-389, 2017.##

17. Taylor, J. R. “Error analysis”, Univ. Science Books, Sausalito, California. 1997.##

18. Xie, Y., Li, P., Lan, J., & Zhang, D. “Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled Surface”, J. Heat. Trans., Vol. 135, No. 5, 2013.##

19. Gilard, V. & Brizzi, L. E. “Slot Jet Impinging on a Concave Curved Wall”, J. Fluid Eng., Vol. 127, No. 3, pp. 595-603, 2005.##

  1. 20.  Thomann, H. “Effect of Streamwise Wall Curvature on Hea#t Transfer in a Turbulent Boundary Layer”, J. Fluid Mech., Vol. 33, No. 2, PP. 283-292, 1968.##

21. Schlichting, H. “Boundary layer theory”, 7th ed, McGraw-Hill, New York, 1979.##

22. Cornaro, C., Fleischer, A. S., & Goldstein, R. J. “Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces”, Exp. Therm Fluid Sci., Vol. 20, No. 2, pp. 66-78, 1999.##

23. Goldstein, R. J., & Seol, W. S. “Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment”, Int. J. Heat Mass Tran., Vol. 34, No. 8, pp. 2133-2147, 1991.##

  1. 24.  Ahmadi, H., Rajabi-Zargarabadi, M., Mujumdar, A. S., & Mohammadpour, J. “Numerical Modeling of a Turbulent Semi-Confined Slot Jet Impinging on a Concave Surface”, Therm sci., Vol. 19, No. 1, pp. 129-140, 2015.##