ترکیب روش‌های طول‌های مجزا و توزیع k تمام طیف برای تجزیه‌وتحلیل انتقال حرارت تشعشعی- هدایتی در یک محفظه دو بعدی

نوع مقاله : گرایش پیشرانش و انتقال حرارت

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان

2 دانشکده مهندسی شیمی، دانشگاه صنعتی سیرجان

چکیده

در این پژوهش، به مطالعه عددی ترکیب سازوکار­های انتقال حرارت تشعشعی و هدایتی در یک محفظه دو بعدی پرداخته می­شود. دیواره پایینی این محفظه دارای یک فرو رفتگی بوده که با استفاده از روش انسداد کردن مدل می­شود. محیط واسط در این محفظه، مخلوطی از هوا با گازهای تشعشعی دی‌اکسید کربن و بخار آب در نظر گرفته می­شود. این مخلوط به‌صورت یک محیط همگن در پخش، صدور و جذب تشعشع شرکت می­کند. برای محاسبه دقیق و خط به خط توزیع ضریب جذب این مخلوط در تمام محدوده طیف، از اطلاعات پایگاه داده HITRAN2008 استفاده می­شود. برای شبیه­سازی محیط به­صورت غیر خاکستری، روش موثر و دقیق توزیع k تمام طیف به‌کار گرفته می‌شود؛ در حالی‌که محاسبات مربوط به محیط خاکستری با استفاده از مدل ضریب جذب میانگین پلانک انجام می­شوند. معادله حاکم بر این محفظه، معادله انرژی بوده که با استفاده از روش حجم محدود حل می­شود. به‌علاوه، برای محاسبه ترم دیورژانس شار تشعشعی در معادله انرژی، از روش مشهور و کارآمد طول‌های مجزا استفاده می­شود. به‌هرحال، نتایج این مطالعه به­وضوح نشان می­دهد که اختلاف میان نتایج محیط­های خاکستری و غیر خاکستری در تعیین رفتارهای حرارتی محفظه، به‌طور قابل توجهی وابسته به مقادیر پارامترهای تشعشعی است.

کلیدواژه‌ها


Smiley face

  1. Siegle, R., and Howell, J. R. “Thermal Radiation Heat Transfer”, 4th Edition, Taylor & Francis, New York, 2002.##
  2. Modest, M. F. “Radiative Heat Transfer”, Third Edition, Academic Press, New York, 2013.##
  3. Zabihi, M., Lari, K., and Amiri, H. “Coupled Radiative-Conductive Heat Transfer Problems in Complex Geometries using Embedded Boundary Method”, J. Braz. Soc. Mech. Sci., Vol. 39, No. 7, pp. 2847-2864, 2017.##
  4. Keshtkar, M. M., and Amiri, B. “Numerical Simulation of Radiative-Conductive Heat Transfer in an Enclosure with an Isotherm Obstacle”, Heat Transfer Eng., Vol. 39, No. 1, pp. 72-83, 2018.##
  5. Sukumar, S., and Kar, S. P. “A Combined Conduction–Radiation Model for Analyzing the Role of Radiation on Freezing of a Biological Tissue”, J. Therm. Sci. Eng. Appl., Vol. 12, No. 1, pp. 011015 (11 pages), 2020.##
  6. Li, Z. H., Li, X. L., Xia, X. L., and Sun, C. “A Hybrid Strategy for Solving Radiation-Conduction in Irregular Geometries Filled with Gray Semitransparent Medium using Monte Carlo Method Combined with Blocked-off and Embedded Boundary Treatments”, Numer. Heat Tr. B-Fund., Vol. 77, No. 1, pp. 22-41, 2020.##
  7. Mahapatra, S. K., Nanda, P., and Sarkar, A. “Analysis of Coupled Conduction and Radiation Heat Transfer in Presence of Participating Medium using a Hybrid Method”, Heat Mass Transf., Vol. 41, No. 10, pp. 890-898, 2005.##
  8. Amiri, H., Mansouri, S. H., and Safavinejad, A. “Combined Conductive and Radiative Heat Transfer in an Anisotropic Scattering Participating Medium with Irregular Geometries”, Int. J. Therm. Sci., Vol. 49, No. 3, pp. 492-503, 2010.##
  9. Amiri, H., Mansouri, S. H., and Coelho, P. J. “Application of Modified Discrete Ordinates Method to Combined Conduction‐Radiation Heat Transfer Problems in Irregular Geometries”, Int. J. Numer. Method H., Vol. 22, No. 7, pp. 862-879, 2012.##

10. Sun, Y., and Zhang, X. “A Hybrid Strategy of Lattice Boltzmann Method and Finite Volume Method for Combined Conduction and Radiation in Irregular Geometry”, Int. J. Heat Mass Tran., Vol. 121, pp. 1039-1054, 2018.##

11. Keshtkar, M. M., and Talebizadehsardari, P. “Investigation of Transient Conduction–Radiation Heat Transfer in a Square Cavity using Combination of LBM and FVM”, Sadhana, Vol. 43, No. 4, pp. 64-74, 2018.##

12. Penazzi, L., Blanco, S., Caliot, C., Coustet, C., El Hafi, M., Fournier, R., Galtier, M., Ibarrart, L., and Roger, M. “Toward the use of Symbolic Monte Carlo for Conduction-Radiation Coupling in Complex Geometries”, In Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19, Begel House Inc., 2019.##

13. Atashafrooz, M., and Gandjalikhan Nassab, S. A. “Simulation of Three-Dimensional Laminar Forced Convection Flow of a Radiating Gas over an Inclined Backward-Facing Step in a Duct under Bleeding Condition”, P. I. Mech. Eng. C-J. Mech., Vol. 227, No. 2, pp. 332-345, 2012.##

14. Atashafrooz, M., and Gandjalikhan Nassab, S. A. “Combined Heat Transfer of Radiation and Forced Convection Flow of Participating Gases in a Three-Dimensional Recess”, J. Mech. Sci. Technol., Vol. 26, No. 10, pp. 3357-3368, 2012.##

15. Ansari, A. B., and Gandjalikhan Nassab, S. A. “Forced Convection of Radiating Gas over an Inclined Backward Facing Step using the Blocked-off Method”, Therm. Sci., Vol. 17, No. 3, pp. 773-786, 2013.##

16. Atashafrooz, M., and Gandjalikhan Nassab, S. A. “Simulation of Laminar Mixed Convection Recess Flow Combined with Radiation Heat Transfer”, IJST-T. Mech. Eng., Vol. 37, No. MI, pp. 71-75, 2013.##

17. Sarvari, S. H. “A New Approach to Solve the Radiative Transfer Equation in Plane-Parallel Semitransparent Media with Variable Refractive Index Based on the Discrete Transfer Method”, Int. Commun. Heat Mass, Vol. 78, pp. 54-59, 2016.##

18. Sarvari, S. H. “Solution of Multi-Dimensional Radiative Heat Transfer in Graded Index Media using the Discrete Transfer Method”, Int. J. Heat Mass Tran., Vol. 112, pp. 1098-1112, 2017.##

19. Sadeghi, P., and Safavinejad, A. “Radiative Entropy Generation in a Gray Absorbing, Emitting, and Scattering Planar Medium at Radiative Equilibrium”, J. Quant. Spectrosc. Ra., Vol. 201, pp. 17-29, 2017.##

20. Sheikholeslami, M., and Rokni, H. B. “Numerical Simulation for Impact of Coulomb Force on Nanofluid Heat Transfer in a Porous Enclosure in Presence of Thermal Radiation”, Int. J. Heat Mass Tran., Vol. 118, pp. 823–831, 2018.##

21. Zhang, R., Ghasemi, A., Barzinjy, A. A., Zareei, M., Hamad, S. M., and Afrand, M. “Simulating Natural Convection and Entropy Generation of a Nanofluid in an Inclined Enclosure under an Angled Magnetic Field with a Circular Fin and Radiation Effect”, J. Therm. Anal. Calorim., Vol. 139, No. 6, pp. 3803-3816, 2020.##

22. Sheikholeslami, M., Sajjadi, H., Delouei, A. A., Atashafrooz, M., and Li, Z. “Magnetic Force and Radiation Influences on Nanofluid Transportation through a Permeable Media Considering Al2O3 Nanoparticles”, J. Therm. Anal. Calorim., Vol. 136, No. 6, pp. 2477-2485, 2019.##

23. Atashafrooz, M. “Influence of Radiative Heat Transfer on the Thermal Characteristics of Nanofluid Flow over an Inclined Step in the Presence of an Axial Magnetic Field”, J. Therm. Anal. Calorim., Vol. 139, No. 5, pp. 3345-3360, 2020.##

24. Javadzadegan, A., Motaharpour, S. H., Moshfegh, A., Akbari, O. A., Afrouzi, H. H., and Toghraie, D. “Lattice-Boltzmann Method for Analysis of Combined Forced Convection and Radiation Heat Transfer in a Channel with Sinusoidal Distribution on Walls”, Physica A, Vol. 526, Article: 121066, 2019.##

25. Shan, S., Qian, B., Zhou, Z., Wang, Z., and Cen, K. “New Weighted‐Sum‐of‐Gray‐Gases Model for Typical Pressurized Oxy‐fuel Conditions”, Int. J. Energ. Res., Vol. 41, No. 15, pp. 2576-2595, 2017.##

26. Centeno, F. R., Brittes, R., Rodrigues, L. G. P., Coelho, F. R., and França, F. H. R. “Evaluation of the WSGG Model Against Line-By-Line Calculation of Thermal Radiation in a non-Gray Sooting Medium Representing an Axisymmetric Laminar Jet Flame”, Int. J. Heat Mass Tran., Vol. 124, pp. 475-483, 2018.##

27. Yang, X., He, Z., Dong, S., and Tan, H. “Evaluation of the Non-Gray Weighted Sum of Gray Gases Models for Radiative Heat Transfer in Realistic Non-Isothermal and Non-Homogeneous Flames using Decoupled and Coupled Calculations”, Int. J. Heat Mass Tran., Vol. 134, pp. 226-236, 2019.##

28. Bahrami, A., Safavinejad, A., and Amiri, H. “Spectral Radiative Entropy Generation in a Non-Gray Planar Participating Medium Including H2O and CO2”, J. Quant. Spectrosc. Ra., Vol. 227, pp. 32-46, 2019.##

29. Chu, H., Ren, F., Feng, Y., Gu, M., and Zheng, S. “A Comprehensive Evaluation of the Non Gray Gas Thermal Radiation using the Line-By-Line Model in One-and Two-Dimensional Enclosures”, Appl. Therm. Eng., Vol. 124, pp. 362-370, 2017.##

30. Fraga, G. C., Zannoni, L., Centeno F. R., and França, F. H. R. “Evaluation of Different Gray Gas Formulations Against Line-by-Line Calculations in Two-and Three-Dimensional Configurations for Participating Media Composed by CO2, H2O and Soot”, Fire Safety J., Vol. 108, Article 102843, 2019.##

31. Modest, M. F. “Narrow Band and Full Spectrum k-Distributions for Radiative Heat Transfer-Correlated-k vs., Scaling Approximation”, J. Quant. Spectrosc. Ra., Vol. 76, No. 1, pp. 69-83, 2003.##

32. Chu, H., Liu F., and Zhou, H. “Calculations of Gas Thermal Radiation Transfer in                One-Dimensional Planar Enclosure using LBL and SNB Models”, Int. J. Heat Mass Tran., Vol. 54, No. 21-22, pp. 4736-4745, 2011.##

33. Modest, M. F., and Zhang, H. “The Full-Spectrum Correlated-k Distribution for Thermal Radiation from Molecular Gas-Particulate Mixtures”, J. Heat Transf., Vol. 124, No. 1, pp. 30-38, 2002.##

34. Ismail, K. A. R., and Salinas, C. “Non-Gray Radiative Convective Conductive Modeling of a Double Glass Window with a Cavity Filled with a Mixture of Absorbing Gases”, Int. J. Heat Mass Tran., Vol. 49, No. 17-18, pp. 2972-2983, 2006.##

35. Tencer, J., and Howell, J. R. “A Multi-Source Full Spectrum k-Distribution Method for 1-D Inhomogeneous Media”, J. Quant. Spectrosc. Ra., Vol. 129, pp. 308-315, 2013.##

36. Clements, A. G., Porter, R. A., Pranzitelli, A., and Pourkashanian, M. “Evaluation of FSK Models for Radiative Heat Transfer under Oxyfuel Conditions”, J. Quant. Spectrosc. Ra., Vol. 151, pp. 67-75, 2015.##

37. Atashafrooz, M., Gandjalikhan Nassab S. A., and Lari, K. “Numerical Analysis of Interaction Between Non‑Gray Radiation and Forced Convection Flow over a Recess using the Full‑Spectrum k‑Distribution Method”, Heat Mass Transf., Vol. 52, No. 2, pp. 361-377, 2016.##

38. Atashafrooz, M., Gandjalikhan Nassab S. A., and Lari, K. “Coupled Thermal Radiation and Mixed Convection Step Flow of Non-Gray Gas”, J. Heat Transf., Vol. 138, No. 7, pp. 072701-9, 2016.##

39. Sun, Y., Zhang X., and Howell, J. R. “Non-Gray Combined Conduction and Radiation Heat Transfer by using FVM and SLW”, J. Quant. Spectrosc. Ra., Vol. 197, pp. 51-59, 2017.##

40. Yadav, R., Balaji, C., and Venkateshan, S. P. “Implementation of SLW Model in the Radiative Heat Transfer Problems with Particles and High Temperature Gradients”, Int. J. Numer. Method H., Vol. 27, No. 5, pp. 1128-1141, 2017.##

41. Webb, B. W., Solovjov, V. P., and Andre, F. “An Exploration of the Influence of Spectral Model Parameters on the Accuracy of the Rank Correlated SLW Model”, J. Quant. Spectrosc. Ra., Vol. 218, pp. 161-170, 2018.##

42. Darbandi M., and Abrar, B. “Thermal Radiation Transfer Calculations in Combustion Fields using the SLW Model Coupled with a Modified Reference Approach”, J. Quant. Spectrosc. Ra., Vol. 205, pp. 105-113, 2018.##

43. Guo, J., Hu, F., Luo, W., Li, P., and Liu, Z. “A Full Spectrum k-Distribution Based Non-Gray Radiative Property Model for Fly Ash Particles”, Int. J. Heat Mass Tran., Vol. 118, pp. 103-115, 2018.##

44. Guo, J., Hu, F., Luo, W., Li, P., and Liu, Z. “A Full Spectrum k-Distribution Based Non-Gray Radiative Property Model for Unburnt Char”, P. Combust. Inst., Vol. 37, No. 3, pp. 3081-3089, 2019.##

45. Colomer, G., Consul, R., and Oliva, A. “Coupled Radiation and Natural Convection: Different Approaches of the SLW Model for a Non-Gray Gas Mixture”, J. Quant. Spectrosc. Ra., Vol. 107, No. 1, pp. 30-46, 2007.##

46. Proter, R., Liu, F., Pourkashanian, M., Williams, A., and Smith, D. “Evaluation of Solution Method for Radiative Heat Transfer in Gaseous Oxy-Fuel Combustion Environments”, J. Quant. Spectrosc. Ra., Vol. 111, No. 14, pp. 2084-2094, 2010.##

47. Lari, K., Baneshi, M., Gandjalikhan Nassab, S.A., Komiya A., and Maruyama, S. “Numerical Study of Non-Gray Radiation and Natural Convection using the Full-Spectrum                    k-Distribution Method”, Numer. Heat Tr.          A-Appl., Vol. 61, No. 1, pp.61-84, 2012.##

48. Saedodin, S., Biglari, M., Esfe, M.H., and Noroozi, M.J. “Mixed Convection Heat Transfer Performance in a Ventilated Inclined Cavity Containing Heated Blocks: Effect of Dispersing Al2O3 in Water and Aspect Ratio of the Block”, J. Comput. Theor. Nanos., Vol. 10, No. 11, pp. 2663-2675, 2013##

49. Esfe, M. H., Esforjani, S. S. M., Akbari, M., and Karimipour, A. “Mixed-Convection Flow in a Lid-Driven Square Cavity Filled with a Nanofluid with Variable Properties: Effect of the Nanoparticle Diameter and of the Position of a Hot Obstacle”, Heat Transf. Res., Vol. 45, No. 6, pp. 563-578, 2014.##

50. Esfe, M. H., Esforjani, S. S. M., and Akbari, M. “Mixed Convection Flow and Heat Transfer in a Lid-Driven Cavity Subjected to Nanofluid: Effect of Temperature, Concentration and Cavity Inclination Angles”, Heat Transf. Res., Vol. 45, No. 5, pp. 453-470, 2014.##

51. Sajjadi, H., Delouei, A. A., Sheikholeslami, M., Atashafrooz, M., and Succi, S. “Simulation of Three Dimensional MHD Natural Convection Using Double MRT Lattice Boltzmann Method”, Physica A, Vol. 515, pp. 474-496, 2019.##

52. Fereidoon, A., Saedodin, S., Esfe, M. H., and Noroozi, M. J. “Evaluation of Mixed Convection in Inclined Square Lid-Driven Cavity Filled with Al2O3/Water Nano-Fluid”, Eng. Appl. Comp. Fluid, Vol. 7, No. 1, pp. 55-65, 2013.##

53. Esfe, M. H., Akbari, M., and Karimipour, A. “Mixed Convection in a Lid-Driven Cavity with an Inside Hot Obstacle Filled by an            Al2O3–Water Nanofluid”, J. Appl. Mech. Tech. Phy., Vol. 56, No. 3, pp. 443-453, 2015.##

 

54. Azimi, A., and Ghassemi, H. “Modeling of Gas Turbine Combustion Chamber; By Using Network Method”, Aero. Mech. J., Vol. 14, No. 3, pp.1-17, 2018 (In Persian).##

55. Sajjadi, H., Delouei, A. A., Atashafrooz, M., and Sheikholeslami, M., “Double MRT Lattice Boltzmann Simulation of 3-D MHD Natural Convection in a Cubic Cavity with Sinusoidal Temperature Distribution Utilizing Nanofluid”, Int. J. Heat Mass Tran., Vol. 126 (Part A),        pp. 489-503, 2018.##

56. Rothman L. S. et al., “The HITRAN 2008 Molecular Spectroscopic Database”, J. Quant. Spectrosc. Ra., Vol. 110, No. 9-10, pp. 533-572, 2009.##

57. Atashafrooz, M., Gandjalikhan Nassab, S.A., and Ansari, A.B. “Numerical Study of Entropy Generation in Laminar Forced Convection Flow over Inclined Backward and Forward Facing Steps in a Duct”, Int. Rev. Mech. Eng., Vol. 5, No. 5, pp. 898-907, 2011.##

58. Atashafrooz, M., Gandjalikhan Nassab, S. A., and Ansari, B. A. “Numerical Investigation of Entropy Generation in Laminar Forced Convection Flow over Inclined Backward and Forward Facing Steps in a Duct under Bleeding Condition”, Therm. Sci., Vol. 18, No. 2, pp.   479-492, 2014.##