مدل‌سازی تحلیلی بار ضربه‌ای نانوذره روی نانو ورق انحنادار

نوع مقاله : مکانیک جامدات

نویسندگان

1 دانشگاه رازی- دانشکده فنی مهندسی - گروه مهندسی مکانیک

2 کرمانشاه دانشگاه رازی

چکیده

در این مقاله مدل تحلیلی برای بررسی پاسخ دینامیکی نانو‌‌ ورق انحنادار تحت اثر بار ضربه‌ای نانوذره ارائه شده است. برخلاف مقیاس ماکرو، در مقیاس نانو، تعاملات بین‌اتمی مانند نیروی واندروالسی در محاسبات در نظر گرفته می‌شوند. بار ضربه‌ای واردشده به نانو‌ ورق انحنادار، به‌صورت نیروی واندروالسی بین نانو‌ذره و نانو‌‌ ورق در نظر گرفته‌شده و با استفاده از پتانسیل لنارد-جونز نیروی واندروالسی بین نانو‌‌ ورق سیلیکونی و نانو‌ذره کربنی محاسبه گردیده است. برای محاسبه میدان جابجایی نانو ‌ورق از تئوری ورق کیرشهف-لاو و سری دوگانه فوریه استفاده ‌شده است. همچنین، معادلات حاکم با استفاده از نظریه الاستیسیته سطحی و در نظر‌گرفتن تنش پسماند سطحی، روابط گورتین-مرداک و اصل هامیلتون استخراج شده و این معادلات برای نانو ورق انحناء‌دار با شرایط تکیه‌گاهی ساده، با استفاده از روش عددی رانج-کاتای مرتبه چهارم و کد‌نویسی متلب حل شده است. نتایج مدل تحلیلی با مدل تحلیلی که بار ضربه‌ای نانوذره را روی نانو‌ ورق مسطح چهارگوش مدل کرده، اعتبارسنجی شده است. در ادامه، اثر پارامترهای هندسی نانو ‌ورق مانند انحناء و ضخامت، اثرات سطحی آن و تغییرات جرم و سرعت نانو‌ذره بر نیروی واندروالسی و پاسخ دینامیکی نانو ‌‌‌ورق مورد بررسی قرارگرفته است. نتایج نشان می‌دهد که با افزایش شعاع خمیدگی ورق، بیشینه تغییر شکل در یک زاویه انحنای ثابت کاهش می‌یابد و با درنظرگرفتن اثر سطحی، بیشینه جابجایی مرکز نانو‍ ورق نیز کاهش خواهد یافت و نیز نقش اثر سطحی در بیشینه انحراف نانو ورق با افزایش ضخامت ورق کمتر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analytical Modeling of Impact loading of Nanoparticles on the Nano-curved Plate

نویسندگان [English]

  • Saeed Feli 1
  • Gelareh Mehraban 2
1 Dept. of Mechanical Engineering, Razi University, Kermanshah, I. R. of Iran
2 Dept. of Mechanical Engineering, Razi University, Kermanshah, I. R. of Iran
چکیده [English]

In this paper an analytical model is presented to investigate the dynamic response of the nano-curved plate under impact loading of nanoparticles. Unlike the macroscale, long-range interatomic interactions, such as the Van der Waals (vdW) force, are considered at the nanoscales. The impact load on the nano- curved plate is considered as an interaction between the nanoparticle and the nano-plate. The vdW force between the carbon nanoparticle and silicon nano-curved plate is determined by the Lennard-Jones potential. The Love-Kirchhoff plate theory and Double Fourier series are used for determining the displacement field of the nano-plate. Also the governing equations of the nano-curved plate are derived by considering the residual surface stress, Gurtin and Murdoch relations and Hamilton's principle and are solved for a simply supported nano-curved plate by using the Rung-Kutta’s fourth order method in MATLAB. The analytical model results are validated with an analytical model that has investigated the dynamic response of the nanoparticle impact on a rectangular nano-plate. The effects of geometrical parameters such as curvature, thickness, mass and velocity are investigated. Also the surface effects of the nano-plate on the vdW force and the dynamic response of the nano-curved plate are studied. The results show that by increasing the radius of curvature, the maximum deformation at a constant curvature angle is decreased. Also, by considering the surface effect, the maximum displacement of the center of the nano-plate is reduced and the role of the surface effect on the maximum deflection of the nano-plate decreases with increasing nano-plate thickness.

کلیدواژه‌ها [English]

  • Nano-curved plate
  • impact
  • Nanoparticle
  • Analytical solution

Smiley face

  1. Karlicic, D., Kozic, P., Adhikari, S., Cajic, M., Murmu, T., and Lazarevic, M. “Nonlocal massnanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field”, Int. J. Mech. Sci., Vol. 96–97, pp. 132–42, 2015.##
  2. Wilber, J. P., Clemons, C. B., Young, G. W., Buldum, A., and Quinn, DD. “Continuum and atomistic modeling of interacting graphene layers”,  Phys. Rev. B, Vol. 75, 045418, 2007.##
  3. Sun, W. F. “The dynamic effect on mechanical contacts between nanoparticles”, Nanoscale, Vol. 5, No. 12, pp. 658–669, 2013.##
  4. Sun, W. F. “Interaction forces between a spherical nanoparticle and a flat surface”,  Phys Chem Chem Phys, Vol. 16, No. 5, pp, 846–854, 2014.##
  5. Assadi, A. “Size dependent forced vibration of nanoplates with consideration of surface effects”,  Appl. Math. Model, Vol 37, No. 3, pp. 575–588, 2013.##
  6. Huang, D. W., “Size-dependent response of ultra-thin films with surface effects”, Int. J. Solids and Struct., Vol. 45, pp. 568–579, 2008.##
  7. Li, H.B., Wang, X. “Effect of small scale on the dynamic characteristic of carbon nanotubes under axially oscillating loading”, Physica, Vol. 46, pp. 198–205, 2012.##
  8. Wang, C M., Zhang, Y Y., and He,  X Q. “Vibration of nonlocal Timoshenko beams”, Nanotechnology, Vol. 18, 105401, 2007.##
  9. Malekzadeh Fard, K., and Gholami, M. “Dynamic Response of the Curved Composite Shells Subjected to Low-Velocity Multi Mass Impacts” ,J. Arospace Mech., Vol. 10, No. 3, pp. 73-88, 2014 (in persian).##

10. Sun, W. F., Zeng, Q. H., Yu, A. B., and Kendall, K. “Calculation of Normal Contact Forces between Silica Nanospheres”, Langmuir, Vol. 29, No. 7, pp. 825–37, 2013.##

11. Liu, H., Liu, J., Yang, J. L., and Feng, X. Q. “Low velocity impact of a nanoparticle on a rectangular nanoplate: A theoretical study”, Int. J. Mech. Sci., Vol. 123 , pp. 253–259, 2017.##

12. Feng, X. Q., Li, H., Zhao, H. P., and Yu, S. W. “Numerical simulations of the normal impact of adhesive microparticles with a rigid substrate”, Powder Technol, Vol. 189, pp. 34–41, 2009.##

13. Yang, M. J., Qiao, P. Z. “Nonlinear impact analysis of fully backed composite sandwich structures”, Compos. Sci. Technol, Vol. 65 , No. 3-4, pp. 551–562, 2005.##

14. Zhao, D. M., Liu, J. L., Wang, L. “Nonlinear free vibration of a cantilever nanobeam with surface effects: semi-analytical solutions”, Int. J. Mech. Sci., Vol. 113, pp. 184–195, 2016.##

15. Gurtin, M. E., and Murdoch, A. I. “A continuum theory of elastic material surfaces”, Arch Ratio Mech Anal, Vol. 57, pp. 291–323, 1975.##

16. Reddy, J. N. “Energy principles and variational methods in applied mechanics”, second ed, John Wiley & Sons, New Jersy, 2002.##