تحلیل و مقایسه کنترلرهای خطی، خطی‌سازی‌شده پس‌خور و پسگام مبتنی بر کواترنیون در کنترل وضعیت فضاپیما

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسنده

دکتری، سازمان صنایع هوافضا، تهران، ایران

چکیده

در این مقاله، طراحی و تحلیل کنترل وضعیت یک فضاپیما به‌عنوان یک جسم صلب، مبتنی بر سه کنترلر خطی، غیرخطی مبتنی بر خطی‌سازی پس‌خور و غیرخطی مبتنی بر پسگام ارائه‌شده است. با توجه به ویژگی بیان وضعیت به‌صورت فراگیر بر اساس پارامترهای کواترنیون، از این پارامترها برای استخراج معادلات دینامیکی استفاده‌شده است. پایداری فراگیر مجانبی کنترلر خطی و پسگام بر اساس روش لیاپانوف اثبات‌شده است. پایداری حلقه بسته کنترلر خطی‌سازی‌شده پس‌خور نیز با نشان‌ دادن عدم وجود دینامیک داخلی اثبات‌شده است. بهره‌های کنترلی در روش خطی‌ و پسگام بر اساس مدل خطی به‌دست‌آمده از خطی‌سازی محلی حول نقطه تعادل و در روش خطی‌سازی‌شده پس‌خور بر اساس مدل خطی فراگیر، تعیین‌شده است. عملکرد این سه کنترلر در سناریوهای مختلف باهم مقایسه شده است. نتایج نشان می‌دهند که کنترلر خطی‌سازی‌شده پس‌خور قادر به برآورد‌سازی دقیق زمان نشست مطلوب می‌باشد. درصورتی‌که بیشینه‌ خطای زمان نشست حاصل‌شده نسبت به زمان نشست مطلوب در کنترل پسگام در حدود 17% و در کنترلر خطی در حدود 22% است. البته تلاش کنترلی کنترلر خطی‌سازی‌شده پس‌خور و پسگام به ترتیب 100% و 46% بیشتر از کنترلر خطی می‌باشد.

تازه های تحقیق

  • تحلیل پایداری غیرخطی مبتنی بر تابع لیاپانوف
  • انتخاب ساختار ماتریس‌های بهره‌ کنترلی برای چرخش دقیق حول محور ویژه اولیه
  • تعیین مقادیر بهره‌‌های کنترلی در کنترلر خطی و کنترلر غیرخطی پسگام بر اساس دینامیک خطی‌سازی‌شده محلی

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and Comparison of Linear, Feedback Linearized and Backstepping Controllers Based on Quaternion in Spacecraft Attitude Control

نویسنده [English]

  • Mahdi Nikusokhan Lame
Ph.D., Aerospace Industry Organization, Tehran, Iran.
چکیده [English]

In this paper, the attitude control design and analysis of a spacecraft as a rigid body based on three controllers of linear, nonlinear based on feedback linearization and backstepping is presented. According to the global presentation of the attitude based on quaternion parameters, these parameters have been used to derive the dynamic equations. Global asymptotic stability of linear and backstepping controllers is proved based on the Lyapunov method. The closed-loop stability of the feedback linearized controller is also proved by showing there are no internal dynamics. The controller gains are determined in linear and backstepping controllers based on linearized dynamics, derived from the local linearization around the equilibrium point. While, in the feedback linearized controller, gains are determined based on the global linearized dynamic equation. The performance of these three controllers in different scenarios is compared to each other. The results show that the feedback linearized controller can satisfy accurately the desired rise time. Whereas, the maximum error in achieving the desired rise time is 17% and 22% for backstepping and linear controllers, respectively. Of course, the control effort for the feedback linearized and backstepping is 100% and 46% more than the linear controller, respectively.

کلیدواژه‌ها [English]

  • Attitude control
  • Quaternion
  • Linear control
  • Backstepping
  • Feedback Linearized
  • Spacecraft

Smiley face

[1] Markley FL, Crassidis JL. Fundamentals of spacecraft attitude determination and control. New York, NY: Springer New York; 2014##.
[2] Mortensen RE. A globally stable linear attitude regulator. International journal of control. 1968 1;8(3):297-302##.
[3] Dwyer T. Exact nonlinear control of large angle rotational maneuvers. IEEE Transactions on Automatic Control. 1984;29(9):769-74##.
[4] Wie B, Weiss H, Arapostathis A. Quarternion feedback regulator for spacecraft eigenaxis rotations. Journal of Guidance, Control, and Dynamics. 1989;12(3):375-80##.
[5] Dwyer III TA. Exact nonlinear control of spacecraft slewing maneuvers with internal momentum transfer. Journal of Guidance, Control, and Dynamics. 1986;9(2):240-7##.
[6] Wie B, Barba PM. Quaternion feedback for spacecraft large angle maneuvers. Journal of Guidance, Control, and Dynamics. 1985;8(3):360-5##.
[7] Wu CS, Chen BS. Attitude Control of Spacecraft: Mixed H/H∞ Approach. Journal of Guidance, Control, and Dynamics. 2001;24(4):755-66##.
[8] Carrington CK, Junkins JL. Optimal nonlinear feedback control for spacecraft attitude maneuvers. Journal of Guidance, Control, and Dynamics. 1986;9(1):99-107##.
[9] Wen JY, Kreutz-Delgado K. The attitude control problem. IEEE Transactions on Automatic control. 1991;36(10):1148-62##.
[10] Lo SC, Chen YP. Smooth sliding-mode control for spacecraft attitude tracking maneuvers. Journal of Guidance, Control, and Dynamics. 1995;18(6):1345-9##.
[11] Krstic M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft. IEEE Transactions on Automatic Control. 1999;44(5):1042-9##.
[12] Wisniewski R. Linear time-varying approach to satellite attitude control using only electromagnetic actuation. Journal of Guidance, Control, and Dynamics. 2000;23(4):640-7##.
[13] Kuang J, Leung AY. H Feedback for Attitude Control of Liquid-Filled Spacecraft. Journal of Guidance, Control, and Dynamics. 2001;24(5):1053##.
[14] Kim KS, Kim Y. Backstepping control of rigid spacecraft slew maneuver. In AIAA Guidance, Navigation, and Control Conference and Exhibit 2001: 4210##.
[15] Bang H, Myung HS, Tahk MJ. Nonlinear momentum transfer control of spacecraft by feedback linearization. Journal of Spacecraft and Rockets. 2002;39(6):866-73##.
[16] Show LL, Juang JC, Jan YW. An LMI-based nonlinear attitude control approach. IEEE transactions on control systems technology. 2003 29;11(1):73-83##.
[17] Kim KS, Kim Y. Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Transactions on control systems technology. 2003;11(6):822-9##.
[18] Bang H, Lee JS, Eun YJ. Nonlinear attitude control for a rigid spacecraft by feedback linearization. KSME International Journal. 2004;18:203-10##.
[19] Luo W, Chu YC, Ling KV. H-infinity inverse optimal attitude-tracking control of rigid spacecraft. Journal of guidance, control, and dynamics. 2005;28(3):481-94##.
[20] Kristiansen R, Nicklasson PJ. Satellite attitude control by quaternion-based backstepping. InProceedings of the 2005, American Control Conference, 2005:907-912, IEEE##.
[21] Hu Q, Xiao B, Zhang Y. Adaptive backstepping based fault tolerant spacecraft attitude control under loss of actuator effectiveness. In AIAA Guidance, Navigation, and Control Conference 2010: 8306##.
[22] Ali I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver. Journal of guidance, control, and dynamics. 2010;33(1):254-9##.
[23] Yang Y. Analytic LQR design for spacecraft control system based on quaternion model. Journal of aerospace engineering. 2012;25(3):448-53##.
[24] Yang Y. Quaternion-based lqr spacecraft control design is a robust pole assignment design. Journal of Aerospace Engineering. 2014;27(1):168-76##.
[25] Navabi M, Hosseini MR. Spacecraft quaternion based attitude input-output feedback linearization control using reaction wheels. In2017 8th International Conference on Recent Advances in Space Technologies (RAST) 2017 Jun 19 (pp. 97-103). IEEE##.
[26] Giuseppi A, Pietrabissa A, Cilione S, Galvagni L. Feedback linearization-based satellite attitude control with a life-support device without communications. Control Engineering Practice. 2019;90:221-30##.
[27] Xie Y, Lei Y, Guo J, Meng B. Spacecraft Dynamics and Control. Singapore: Springer; 2022##.
[28] Gołąbek M, Welcer M, Szczepański C, Krawczyk M, Zajdel A, Borodacz K. Quaternion Attitude Control System of Highly Maneuverable Aircraft. Electronics. 2022;11(22):3775##.
[29] Septanto H, Kurniawan E, Suprijanto D. Quaternion feedback attitude control system design based on weighted–L2–gain performance. Results in Engineering. 2023 Mar 1;17:100717##.
[30] Yuan JS. Closed-loop manipulator control using quaternion feedback. IEEE Journal on Robotics and Automation. 1988;4(4):434-40##.
[31] Bobrow F, Angelico BA, Martins FP, da Silva PS. The Cubli: modeling and nonlinear attitude control utilizing quaternions. IEEE Access. 2021 Aug 27;9:122425-42##.
[32] Weiss H. Quaternion-based rate/attitude tracking system with application to gimbal attitude control. Journal of Guidance, Control, and Dynamics. 1993;16(4):609-16##.
[33] Mazenc F, Yang S, Akella MR. Quaternion-based stabilization of attitude dynamics subject to pointwise delay in the input. Journal of Guidance, Control, and Dynamics. 2016;39(8):1697-705##.
[34] Song C, Kim SJ, Kim SH, Nam HS. Robust control of the missile attitude based on quaternion feedback. Control Engineering Practice. 2006;14(7):811-8##.
[35] Xia Y, Lu K, Zhu Z, Fu M. Adaptive back‐stepping sliding mode attitude control of missile systems. International Journal of Robust and Nonlinear Control. 2013;23(15):1699-717##.
[36] Wu YJ, Zuo JX, Sun LH. Smooth backstepping sliding mode control for missile attitude system based on parameters online adjusting and estimating for square of disturbance upper bound. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2019;233(1):22-33##.
[37] Ogata K. Modern control engineering. Upper Saddle River, NJ: Prentice hall; 2010##.
دوره 19، شماره 4 - شماره پیاپی 74
شماره پیاپی 74، فصلنامه زمستان
دی 1402
صفحه 41-52
  • تاریخ دریافت: 08 اسفند 1401
  • تاریخ بازنگری: 06 فروردین 1402
  • تاریخ پذیرش: 13 اردیبهشت 1402
  • تاریخ انتشار: 01 شهریور 1402