اصلاح الگوریتم ترازیابی ابتدایی کشتی روی اسکله مواج در شرایط عدم قرارگیری حسگرها در مرکز کشتی

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسنده

استادیار، دانشکده دانشکده مهندسی برق و کامپیوتر، دانشگاه کاشان، کاشان، ایران

چکیده

در این مقاله، با فرض آن‌که بلوک اندازه‌گیری اینرسی در مرکز کشتی قرار نداشته باشد، دقت ترازیابی ابتدایی سامانه ناوبری اینرسی بر تکیه‌گاه نوسانی به کمک یکی از روش‌های معمول موردبررسی قرار گرفته و در ادامه راهکاری برای اصلاح این الگوریتم و افزایش دقت ترازیابی، به کمک خروجی ژیروسکوپ‌ها ارائه می‌شود. ابتدا به کمک معادله پواسون در یک دستگاه اینرسی ثانویه و تجزیه ماتریس تبدیل بین دستگاه‌های بدنی و جغرافیایی، الگوریتم ترازیابی سامانه ناوبری اینرسی که روی یک تکیه‌گاه نوسانی قرار دارد، ارائه می‌شود. به این منظور، یک الگوریتم ناوبری کوتاه‌مدت پیشنهاد می‌شود که شرایط اولیه معادلات وضعیت آن به کمک یک دستگاه اینرسی ثانویه معلوم است. به‌منظور اطمینان از مشاهده‌پذیری زوایای تراز و سمت، از قضیه مستقل بودن یک مجموعه متعامد استفاده می‌شود. در ادامه برای افزایش دقت الگوریتم، جملات از جنس شتاب ناشی از فاصله بلوک حسگرهای اینرسی از مرکز جسم محاسبه‌شده و در جهت اصلاح الگوریتم معمول به کار گرفته می‌شود. در انتها قابلیت روش اصلاح‌شده در افزایش دقت در مقایسه با روش معمول از طریق شبیه‌سازی نیز مورد تأیید قرار می‌گیرد.

چکیده تصویری

اصلاح الگوریتم ترازیابی ابتدایی کشتی روی اسکله مواج در شرایط عدم قرارگیری حسگرها در مرکز کشتی

تازه های تحقیق

  • الگوریتم معمول اینرسی ثانویه با فرض عدم قرارگیری حسگرها در مرکز کشتی اصلاح می‌شود.
  • جملات اغتشاشی ناشی از فاصله بلوک حسگرها از مرکز با استفاده از خروجی ژیروسکوپ‌ها اندازه‌گیری و در الگوریتم پیشنهادی به کار گرفته می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modification of the Ship Coarse Alignment Algorithm on a Wavy Pier in the Case Where Sensors Are Not Located in the Center

نویسنده [English]

  • Seyed Ali Zahiripour
Assistant Professor, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran
چکیده [English]

In this paper, assuming that the inertial measurement unit is not located in the center of the ship, the initial alignment accuracy of the inertial navigation system on the oscillating base is investigated using one of the common methods, and then a solution is presented to modify this algorithm and increase the alignment accuracy using the output of gyroscopes. First, using the Poisson equation in a secondary inertial frame and the decomposition of the transformation matrix between body and geographic frames, the alignment algorithm for the inertial navigation system located on an oscillating base is presented. For this purpose, a short-term navigation algorithm is proposed and the initial conditions of its equations will be known by defining a secondary inertial frame, which is the same as the initial body frame. In order to ensure the observability of the level and heading angles, the theorem of independence of an orthogonal set is used. Next, to increase the accuracy of the algorithm, acceleration terms resulting from the distance of the inertial measurement unit from the center of the object are calculated and used to modify the conventional algorithm. Finally, the ability of the modified method to increase accuracy compared to the conventional method is evaluated through simulation.

کلیدواژه‌ها [English]

  • Coarse alignment
  • Secondary inertial
  • Oscillating base
  • Transformation matrix decomposition
  • Sensors not located in the center

Smiley face

[1] Abdolkarimi ES, Rafatnia S. Design of a Constrained Extended State Observer for Practical Implementation on an INS/GNSS Integrated Navigation System. Aerospace Mechanics. 2024;20(3):31-46. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1403.20.3.3.9
[2] Chang L, Bian Q, Zuo Y, Zhou Q. SINS/GNSS-integrated navigation based on group affine SINS mechanization in local-level frame. IEEE/ASME Transactions on Mechatronics. 2023;28(5):2471-82. DOI: https://doi.org/10.1109/TAES.2023.3285716
[3] Afonin A, Sulakov A, Maamo M, Shapovalov N, editors. The development and evaluation of a combined initial alignment algorithm for strapdown inertial navigation system. Journal of Physics: Conference Series; 2022: IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/2373/7/072023
[4] Wei X, Li J, Han D, Wang J, Zhan Y, Wang X, et al. An in-flight alignment method for global positioning system-assisted low cost strapdown inertial navigation system in flight body with short-endurance and high-speed rotation. Remote Sensing. 2023;15(3):711. DOI: https://doi.org/10.3390/rs15030711
[5] Zahiripour SA. Investigating the effect of semi-analytical initial alignment error on the efficiency of inertial navigation system. Journal of Aeronautical Engineering. 2024. (In Persian) DOI: https://doi.org/10.22034/joae.2024.433440.1215
[6] Khan Kalantary s, mohammadkhani h. A Novel Approach for Estimating the Initial Alignment of INS based on the Kalman Filter and an Estimator with Unknown Input. Aerospace Mechanics. 2021;17(1):1-11. (In persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.17.1.2.3
[7] Xu X, Guo Z, Yao Y, Zhang T. Robust initial alignment for SINS/DVL based on reconstructed observation vectors. IEEE/ASME Transactions on Mechatronics. 2020;25(3):1659-67. DOI: https://doi.org/10.1109/TMECH.2020.2982199
[8] Pei F, Yang S, Yin S. In-motion initial alignment using state-dependent extended Kalman filter for strapdown inertial navigation system. IEEE Transactions on Instrumentation and Measurement. 2020;70:1-12. DOI: https://doi.org/10.1109/TIM.2020.3027405
[9] Faraji J, Keighobadi J. Design and Simulation of the integral backstepping sliding mode control and extended Kalman-Bucy filter for quadrotor. Journal of Mechanical Engineering. 2021;50(4):131-40. (In Persian) DOI: https://doi.org/10.22034/jmeut.2021.9416
[10]  Vosoughi H, Keighobadi J, Faraji J. Design and implementation of AHRS by using Kautz function and predictive estimator with Euler’s dynamic. Modares Mechanical Engineering. 2017;17(6):221-232. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.10275940.1396.17.6.33.3
[11] Khankalantary S, Rafatnia S, mohammadkhani h. Design and Implementation of a Centralized Predictive Model Estimation Algorithm with the Fuzzy Approach for In-Motion Alignment of a Low-cost Integrated INS/GPS Inertial Navigation System. Aerospace Mechanics. 2022;17(4):1-14. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.14.4.1.9
[12] Sun J, Yang J, Gui G, Sari H. In-motion alignment method of SINS under the geographic latitude uncertainty. IEEE Transactions on Vehicular Technology. 2022;72(1):125-35. DOI: https://doi.org/10.1109/TVT.2022.3201903
[13] Zahiripour SA. Physical Initial Flight Alignment for Stabilized Platform Inertial Navigation system Using State Feedback. Space Science and Technology. 2024;17(1):1-9. (In Persian) DOR: https://doi.org/10.22034/jsst.2024.1446
[14] Haijian X, Tao W, Xinghu C, Jintao W, Fei L. Anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base. Journal of Systems Engineering and Electronics. 2023;34(5):1333-42. DOI: https://doi.org/10.23919/JSEE.2023.000112
[15] Zahiripour S.A, Salehi-Amiri S.M, Strapdown inertial navigation systems. University of Kashan, 2024, Iran, ISBN 978-600-6968-29-2 (In Persian)
[16] Li H, Pan Q, Wang X, Jiang X, Deng L. Kalman filter design for initial precision alignment of a strapdown inertial navigation system on a rocking base. The Journal of Navigation. 2015;68(1):184-95.  DOI: https://doi.org/10.1017/S0373463314000575
[17] Verma VS, Sitara B, Kumar BR, Chandrasekhar R, Reddy GS. Novel method for coarse alignment of strapdown INS on oscillatory base. Journal of Aerospace Sciences and Technologies. 2009:194-200. DOI: https://doi.org/10.61653/joast.v61i1.2009.633
[18] Fan Z, Chai H, Liang X, Wang H. Experimental Research on Shipborne SINS Rapid Mooring Alignment with Variance-Constraint Kalman Filter and GNSS Position Updates. Sensors. 2024;24(11):3487. DOI: https://doi.org/10.3390/s24113487
[19] Emel’yantsev G, Stepanov A, Blazhnov B. Initial Alignment of Shipborne SINS under Ship Motion. Gyroscopy and Navigation. 2020;11(4):277-84. DOI: https://doi.org/10.1134/S2075108720040045
[20] Cho H, Lee MH, Ryu DG, Lee KS, Lee SH, Lee H-C, et al. A two-stage initial alignment technique for underwater vehicles dropped from a mother ship. International Journal of Precision Engineering and Manufacturing. 2013;14:2067-73. DOI: https://doi.org/10.1007/s12541-013-0280-y
[21] Ghasrizadeh R, Nikkhah A. improve coarse alignment in inertial navigation system By the method of Identification the Kalman filter matrix. Journal of Space Science and Technology. 2020;13(4):81-90. DOR: https://dor.isc.ac/dor/20.1001.1.20084560.1399.13.4.8.4
[22] Baker A.C, Porteous H.L, linear algebra and differential equations. Prentice Hall, 1990, ISBN 978-0135384558
دوره 21، شماره 1 - شماره پیاپی 79
شماره پیاپی 79، فصلنامه بهار
خرداد 1404
صفحه 127-140
  • تاریخ دریافت: 10 آذر 1403
  • تاریخ بازنگری: 06 بهمن 1403
  • تاریخ پذیرش: 04 اسفند 1403
  • تاریخ انتشار: 01 خرداد 1404